Error estimation and optimization of the functional algorithms of a random walk on a grid which are applied to solving the Dirichlet problem for the Helmholtz equation.
A new and elegant procedure is proposed for the solution of mixed potential problems in a half-space with a circular line of division of boundary conditions. The approach is based on a new type of integral operators with special properties. Two general external problems are solved; i) An arbitrary potential is specified at the boundary outside a circle, and its normal derivative is zero inside; ii) An arbitrary normal derivative is given outside the circle, and be potential is zero inside. Several...
We examine the Poisson equation with boundary conditions on a cylinder in a weighted space of , p≥ 3, type. The weight is a positive power of the distance from a distinguished plane. To prove the existence of solutions we use our result on existence in a weighted L₂ space.
We consider the Poisson equation with the Dirichlet and the Neumann boundary conditions in weighted Sobolev spaces. The weight is a positive power of the distance to a distinguished plane. We prove the existence of solutions in a suitably defined weighted space.
MSC 2010: 44A35, 35L20, 35J05, 35J25In this paper are found explicit solutions of four nonlocal boundary value problems for Laplace, heat and wave equations, with Bitsadze-Samarskii constraints based on non-classical one-dimensional convolutions. In fact, each explicit solution may be considered as a way for effective summation of a solution in the form of nonharmonic Fourier sine-expansion. Each explicit solution, may be used for numerical calculation of the solutions too.