One-sided Mullins-Sekerka flow does not preserve convexity.
We prove the optimal convergence of a discontinuous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, Int. J. Numer. Methods Eng.76 (2008) 427–454]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson's problem with homogeneous boundary conditions over two-dimensional...
We prove the optimal convergence of a discontinuous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, Int. J. Numer. Methods Eng.76 (2008) 427–454]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson's problem with homogeneous boundary conditions over two-dimensional...
We consider the Schrödinger operator on , where is a given domain of . Our goal is to study some optimization problems where an optimal potential has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.