Previous Page 5

Displaying 81 – 87 of 87

Showing per page

Optimal convergence of a discontinuous-Galerkin-based immersed boundary method*

Adrian J. Lew, Matteo Negri (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We prove the optimal convergence of a discontinuous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, Int. J. Numer. Methods Eng.76 (2008) 427–454]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson's problem with homogeneous boundary conditions over two-dimensional...

Optimal convergence of a discontinuous-Galerkin-based immersed boundary method*

Adrian J. Lew, Matteo Negri (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We prove the optimal convergence of a discontinuous-Galerkin-based immersed boundary method introduced earlier [Lew and Buscaglia, Int. J. Numer. Methods Eng.76 (2008) 427–454]. By switching to a discontinuous Galerkin discretization near the boundary, this method overcomes the suboptimal convergence rate that may arise in immersed boundary methods when strongly imposing essential boundary conditions. We consider a model Poisson's problem with homogeneous boundary conditions over two-dimensional...

Optimal potentials for Schrödinger operators

Giuseppe Buttazzo, Augusto Gerolin, Berardo Ruffini, Bozhidar Velichkov (2014)

Journal de l’École polytechnique — Mathématiques

We consider the Schrödinger operator - Δ + V ( x ) on H 0 1 ( Ω ) , where Ω is a given domain of d . Our goal is to study some optimization problems where an optimal potential V 0 has to be determined in some suitable admissible classes and for some suitable optimization criteria, like the energy or the Dirichlet eigenvalues.

Currently displaying 81 – 87 of 87

Previous Page 5