Existence of solutions for quasilinear degenerate elliptic equations.
We consider the anisotropic quasilinear elliptic Dirichlet problem where is an open bounded subset of containing the origin. We show the existence of entropy solution for this equation where the data is assumed to be in and is a positive constant.
We study the following singular elliptic equation with critical exponent ⎧ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.