The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 11 of 11

Showing per page

Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions

Zesheng Feng, Aiping Zhang, Hongya Gao (2024)

Czechoslovak Mathematical Journal

This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi’s iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function g , and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.

Local Lipschitz continuity of solutions of non-linear elliptic differential-functional equations

Pierre Bousquet (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The object of this paper is to prove existence and regularity results for non-linear elliptic differential-functional equations of the form div a ( u ) + F [ u ] ( x ) = 0 , over the functions u W 1 , 1 ( Ω ) that assume given boundary values ϕ on ∂Ω. The vector field a : n n satisfies an ellipticity condition and for a fixed x, F[u](x) denotes a non-linear functional of u. In considering the same problem, Hartman and Stampacchia [Acta Math.115 (1966) 271–310] have obtained existence results in the space of uniformly Lipschitz continuous functions...

Currently displaying 1 – 11 of 11

Page 1