Landesman–Lazer type conditions and quasilinear elliptic equations
We establish a local Lipschitz regularity result for local minimizers of asymptotically convex variational integrals.
We establish a local Lipschitz regularity result for local minimizers of asymptotically convex variational integrals.
This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi’s iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function , and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.
The object of this paper is to prove existence and regularity results for non-linear elliptic differential-functional equations of the form over the functions that assume given boundary values ϕ on ∂Ω. The vector field satisfies an ellipticity condition and for a fixed x, F[u](x) denotes a non-linear functional of u. In considering the same problem, Hartman and Stampacchia [Acta Math.115 (1966) 271–310] have obtained existence results in the space of uniformly Lipschitz continuous functions...