Page 1 Next

Displaying 1 – 20 of 22

Showing per page

Néel and Cross-Tie wall energies for planar micromagnetic configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We study a two-dimensional model for micromagnetics, which consists in an energy functional over S 2 -valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Néel and Cross-Tie Wall Energies for Planar Micromagnetic Configurations

François Alouges, Tristan Rivière, Sylvia Serfaty (2010)

ESAIM: Control, Optimisation and Calculus of Variations


We study a two-dimensional model for micromagnetics, which consists in an energy functional over S2-valued vector fields. Bounded-energy configurations tend to be planar, except in small regions which can be described as vortices (Bloch lines in physics). As the characteristic “exchange-length” tends to 0, they converge to planar divergence-free unit norm vector fields which jump along line singularities. We derive lower bounds for the energy, which are explicit functions of the jumps of the limit....

Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces

Mihai Mihăilescu, Vicenţiu Rădulescu (2008)

Annales de l’institut Fourier

We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz–Sobolev space.

New linking theorems

Martin Schechter (1998)

Rendiconti del Seminario Matematico della Università di Padova

New regularity results for a generic model equation in exterior 3D domains

Stanislav Kračmar, Patrick Penel (2005)

Banach Center Publications

We consider a generic scalar model for the Oseen equations in an exterior three-dimensional domain. We assume the case of a non-constant coefficient function. Using a variational approach we prove new regularity properties of a weak solution whose existence and uniqueness in anisotropically weighted Sobolev spaces were proved in [10]. Because we use some facts and technical tools proved in the above mentioned paper, we give also a brief review of its results and methods.

Non-existence result for quasi-linear elliptic equations with supercritical growth

Zuo Dong Yang, Junli Yuan (2007)

Commentationes Mathematicae Universitatis Carolinae

We obtain a non-existence result for a class of quasi-linear eigenvalue problems when a parameter is small. By using Pohozaev identity and some comparison arguments, non-existence theorems are established for quasi-linear eigenvalue problems under supercritical growth condition.

Nonlinear boundary value problems involving the extrinsic mean curvature operator

Jean Mawhin (2014)

Mathematica Bohemica

The paper surveys recent results obtained for the existence and multiplicity of radial solutions of Dirichlet problems of the type · v 1 - | v | 2 = f ( | x | , v ) in B R , u = 0 on B R , where B R is the open ball of center 0 and radius R in n , and f is continuous. Comparison is made with similar results for the Laplacian. Topological and variational methods are used and the case of positive solutions is emphasized. The paper ends with the case of a general domain.

Nonlinear elliptic differential equations with multivalued nonlinearities

Antonella Fiacca, Nikolaos M. Matzakos, Nikolaos S. Papageorgiou, Raffaella Servadei (2003)

Czechoslovak Mathematical Journal

In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all . Assuming the existence of an upper and of a lower solution, we prove the existence of a solution between them. Also for a special version of the problem, we prove the existence of extremal solutions in the order interval formed by the upper...

Non-local Gel'fand problem in higher dimensions

Tosiya Miyasita, Takashi Suzuki (2004)

Banach Center Publications

The non-local Gel’fand problem, Δ v + λ e v / Ω e v d x = 0 with Dirichlet boundary condition, is studied on an n-dimensional bounded domain Ω. If it is star-shaped, then we have an upper bound of λ for the existence of the solution. We also have infinitely many bendings in λ of the connected component of the solution set in λ,v if Ω is a ball and 3 ≤ n ≤ 9.

Nonlocal variational problems arising in long wave propagatioN

Orlando Lopes (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study the existence of minimizer for certain constrained variational problems given by functionals with nonlocal terms. This type of functionals are first integrals of evolution equations describing long wave propagation and the existence of minimizer gives the existence and the stability of traveling waves for these equations. Due to loss of compactness, the major problem is to prevent dichotomy of minimizing sequences. Our approach is an alternative to the concentration-compactness...

Nontrivial solutions to boundary value problems for semilinear Δ γ -differential equations

Duong Trong Luyen (2021)

Applications of Mathematics

In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: - Δ γ u = f ( x , u ) in Ω , u = 0 on Ω , where Ω is a bounded domain with smooth boundary in N , Ω { x j = 0 } for some j , Δ γ is a subelliptic linear operator of the type Δ γ : = j = 1 N x j ( γ j 2 x j ) , x j : = x j , N 2 , where γ ( x ) = ( γ 1 ( x ) , γ 2 ( x ) , , γ N ( x ) ) satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity f ( x , ξ ) is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.

Currently displaying 1 – 20 of 22

Page 1 Next