Radial solutions for a nonlocal boundary value problem.
We study the linearized water-wave problem in a bounded domain (e.g.a finite pond of water) of , having a cuspidal boundary irregularity created by a submerged body. In earlier publications the authors discovered that in this situation the spectrum of the problem may contain a continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study radiation conditions at a point of the water surface, where a submerged body touches the surface (see Fig. 1). The radiation...
We study the linearized water-wave problem in a bounded domain (e.g. a finite pond of water) of , having a cuspidal boundary irregularity created by a submerged body. In earlier publications the authors discovered that in this situation the spectrum of the problem may contain a continuous component in spite of the boundedness of the domain. Here, we proceed to impose and study radiation conditions at a point of the water surface, where a submerged body touches the surface (see Fig. 1)....
The purpose of this paper is to provide a method of reduction of some problems concerning families of linear operators with domains to a problem in which all the operators have the same domain . To do it we propose to construct a family of automorphisms of a given Banach space X having two properties: (i) the mapping is sufficiently regular and (ii) for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition with a parameter;...
We prove boundedness and continuity for solutions to the Dirichlet problem for the equation where the left-hand side is a Leray-Lions operator from into with , is a Carathéodory function which grows like and is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of .
Regularity results for transmission problems in domains with (outgoing) cuspidal points are considered. We prove in some special but generic situations that the solution is piecewise in .