Convergence analysis for an exponentially fitted finite volume method
The paper is devoted to the convergence analysis of a well-known cell-centered Finite Volume Method (FVM) for a convection-diffusion problem in . This FVM is based on Voronoi boxes and exponential fitting. To prove the convergence of the FVM, we use a new nonconforming Petrov-Galerkin Finite Element Method (FEM) for which the system of linear equations coincides completely with that of the FVM. Thus, by proving convergence properties of the FEM we obtain similar ones for the FVM. For the error...
Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...
Optimization problems with convex but non-smooth cost functional subject to an elliptic partial differential equation are considered. The non-smoothness arises from a L1-norm in the objective functional. The problem is regularized to permit the use of the semi-smooth Newton method. Error estimates with respect to the regularization parameter are provided. Moreover, finite element approximations are studied. A-priori as well as a-posteriori error estimates are developed and confirmed by numerical...
In this paper, a class of cell centered finite volume schemes, on general unstructured meshes, for a linear convection-diffusion problem, is studied. The convection and the diffusion are respectively approximated by means of an upwind scheme and the so called diamond cell method [4]. Our main result is an error estimate of order h, assuming only the W2,p (for p>2) regularity of the continuous solution, on a mesh of quadrangles. The proof is based on an extension of the ideas developed in...
We study a finite volume method, used to approximate the solution of the linear two dimensional convection diffusion equation, with mixed Dirichlet and Neumann boundary conditions, on Cartesian meshes refined by an automatic technique (which leads to meshes with hanging nodes). We propose an analysis through a discrete variational approach, in a discrete H1 finite volume space. We actually prove the convergence of the scheme in a discrete H1 norm, with an error estimate of order O(h) (on meshes...
Si studiano soluzioni positive dellequazione in , dove , ed è un piccolo parametro positivo. Si impongono in genere condizioni al bordo di Neumann. Quando tende a zero, dimostriamo esistenza di soluzioni che si concentrano su curve o varietà.