Displaying 861 – 880 of 1240

Showing per page

Regularity of domains of parameterized families of closed linear operators

Teresa Winiarska, Tadeusz Winiarski (2003)

Annales Polonici Mathematici

The purpose of this paper is to provide a method of reduction of some problems concerning families A t = ( A ( t ) ) t of linear operators with domains ( t ) t to a problem in which all the operators have the same domain . To do it we propose to construct a family ( Ψ t ) t of automorphisms of a given Banach space X having two properties: (i) the mapping t Ψ t is sufficiently regular and (ii) Ψ t ( ) = t for t ∈ . Three effective constructions are presented: for elliptic operators of second order with the Robin boundary condition with a parameter;...

Regularity of renormalized solutions to nonlinear elliptic equations away from the support of measure data

Andrea Dall'Aglio, Sergio Segura de León (2019)

Czechoslovak Mathematical Journal

We prove boundedness and continuity for solutions to the Dirichlet problem for the equation - div ( a ( x , u ) ) = h ( x , u ) + μ , in Ω N , where the left-hand side is a Leray-Lions operator from W 0 1 , p ( Ω ) into W - 1 , p ' ( Ω ) with 1 < p < N , h ( x , s ) is a Carathéodory function which grows like | s | p - 1 and μ is a finite Radon measure. We prove that renormalized solutions, though not globally bounded, are Hölder-continuous far from the support of μ .

Regularity properties of solutions of elliptic equations in R 2 in limit cases

Angela Alberico, Vincenzo Ferone (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper the Dirichlet problem for a linear elliptic equation in an open, bounded subset of R 2 is studied. Regularity properties of the solutions are proved, when the data are L 1 -functions or Radon measures. In particular sharp assumptions which guarantee the continuity of solutions are given.

Remarques sur les équations linéaires elliptiques du second ordre sous forme divergence dans les domaines non bornés

Pierre Louis Lions (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si dimostra resistenza e l'unicità della soluzione del problema A u = f , u H 0 1 ( Ω ) nel caso in cui Ω è un aperto di n non limitato, A è un operatore variazionale ellittico del secondo ordine a coefficienti misurabili e limitati e f appartiene a H - 1 ( Ω ) .

Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods

Linda El Alaoui, Alexandre Ern (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov–Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Finally, we present results illustrating the efficiency of the estimators, for instance, in the simulation...

Currently displaying 861 – 880 of 1240