Displaying 41 – 60 of 165

Showing per page

Degenerating Cahn-Hilliard systems coupled with mechanical effects and complete damage processes

Christian Heinemann, Christiane Kraus (2014)

Mathematica Bohemica

This paper addresses analytical investigations of degenerating PDE systems for phase separation and damage processes considered on nonsmooth time-dependent domains with mixed boundary conditions for the displacement field. The evolution of the system is described by a degenerating Cahn-Hilliard equation for the concentration, a doubly nonlinear differential inclusion for the damage variable and a quasi-static balance equation for the displacement field. The analysis is performed on a time-dependent...

Differentiability for minimizers of anisotropic integrals

Paola Cavaliere, Anna D'Ottavio, Francesco Leonetti, Maria Longobardi (1998)

Commentationes Mathematicae Universitatis Carolinae

We consider a function u : Ω N , Ω n , minimizing the integral Ω ( | D 1 u | 2 + + | D n - 1 u | 2 + | D n u | p ) d x , 2 ( n + 1 ) / ( n + 3 ) p < 2 , where D i u = u / x i , or some more general functional with the same behaviour; we prove the existence of second weak derivatives D ( D 1 u ) , , D ( D n - 1 u ) L 2 and D ( D n u ) L p .

Eigenvalue problems of quasilinear elliptic systems on Rn.

Gong Bao Li (1987)

Revista Matemática Iberoamericana

In this paper we get the existence results of the nontrivial weak solution (λ,u) of the following eigenvalue problem of quasilinear elliptic systems-Dα (aαβ(x,u) Dβui) + 1/2 Dui aαβ(x,u)Dαuj Dβuj + h(x) ui = λ|u|p-2ui,   for x ∈ Rn, 1 ≤ i ≤ N and u = (u1, u2, ..., uN) ∈ E = {v = (v1, v2, ..., vN) | vi ∈ H1(Rn), 1 ≤ i ≤ N},where aαβ(x,u) satisfy the natural growth conditions. It seems that this kind of problem has never been dealt with before.

Everywhere regularity for vectorial functionals with general growth

Elvira Mascolo, Anna Paola Migliorini (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is F u = Ω a ( x ) [ h | D u | ] p ( x ) d x with h a convex function with general growth (also exponential behaviour is allowed).

Everywhere regularity for vectorial functionals with general growth

Elvira Mascolo, Anna Paola Migliorini (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is F u = Ω a ( x ) [ h | D u | ] p ( x ) d x with h a convex function with general growth (also exponential behaviour is allowed).

Existence and nonexistence of solutions for a quasilinear elliptic system

Qin Li, Zuodong Yang (2015)

Annales Polonici Mathematici

By a sub-super solution argument, we study the existence of positive solutions for the system ⎧ - Δ p u = a ( x ) F ( x , u , v ) in Ω, ⎪ - Δ q v = a ( x ) F ( x , u , v ) in Ω, ⎨u,v > 0 in Ω, ⎩u = v = 0 on ∂Ω, where Ω is a bounded domain in N with smooth boundary or Ω = N . A nonexistence result is obtained for radially symmetric solutions.

Currently displaying 41 – 60 of 165