Displaying 21 – 40 of 68

Showing per page

Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents

Fanghua Lin, Tristan Rivière (1999)

Journal of the European Mathematical Society

There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a S 1 -valued function defined on the boundary of a bounded regular domain of R n . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within the homology...

Concentration phenomena of two-vortex solutions in a Chern-Simons model

Chiun-Chuan Chen, Chang-Shou Lin, Guofang Wang (2004)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

By considering an abelian Chern-Simons model, we are led to study the existence of solutions of the Liouville equation with singularities on a flat torus. A non-existence and degree counting for solutions are obtained. The former result has an application in the Chern-Simons model.

Conformal Geometry and the Composite Membrane Problem

Sagun Chanillo (2013)

Analysis and Geometry in Metric Spaces

We show that a certain eigenvalue minimization problem in two dimensions for the Laplace operator in conformal classes is equivalent to the composite membrane problem. We again establish such a link in higher dimensions for eigenvalue problems stemming from the critical GJMS operators. New free boundary problems of unstable type arise in higher dimensions linked to the critical GJMS operator. In dimension four, the critical GJMS operator is exactly the Paneitz operator.

Continuity of solutions of a nonlinear elliptic equation

Pierre Bousquet (2013)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a nonlinear elliptic equation of the form div [a(∇u)] + F[u] = 0 on a domain Ω, subject to a Dirichlet boundary condition tru = φ. We do not assume that the higher order term a satisfies growth conditions from above. We prove the existence of continuous solutions either when Ω is convex and φ satisfies a one-sided bounded slope condition, or when ais radial: a ( ξ ) = l ( | ξ | ) | ξ | ξ a ( ξ ) = l ( | ξ | ) | ξ | ξ for some increasingl:ℝ+ → ℝ+.

Continuous dependence estimates for the ergodic problem of Bellman-Isaacs operators via the parabolic Cauchy problem

Claudio Marchi (2012)

ESAIM: Control, Optimisation and Calculus of Variations

This paper concerns continuous dependence estimates for Hamilton-Jacobi-Bellman-Isaacs operators. We establish such an estimate for the parabolic Cauchy problem in the whole space  [0, +∞) × ℝn and, under some periodicity and either ellipticity or controllability assumptions, we deduce a similar estimate for the ergodic constant associated to the operator. An interesting byproduct of the latter result will be the local uniform convergence for some classes of singular perturbation problems.

Currently displaying 21 – 40 of 68