regularity for nonlinear elliptic systems of second order.
We prove Hölder regularity of the gradient, up to the boundary for solutions of some fully-nonlinear, degenerate elliptic equations, with degeneracy coming from the gradient.
In this paper, we use -convergence techniques to study the following variational problemwhere , with , and is a bounded domain of , . We obtain a -convergence result, on which one can easily read the usual concentration phenomena arising in critical growth problems. We extend the result to a non-homogeneous version of problem . Finally, a second order expansion in -convergence permits to identify the concentration points of the maximizing sequences, also in some non-homogeneous case.
This paper is devoted to the homogenization beyond the periodic setting, of nonlinear monotone operators in a domain in with isolated holes of size ( a small parameter). The order of the size of the holes is twice that of the oscillations of the coefficients of the operator, so that the problem under consideration is a reiterated homogenization problem in perforated domains. The usual periodic perforation of the domain and the classical periodicity hypothesis on the coefficients of the operator...