Displaying 281 – 300 of 850

Showing per page

Existence, uniqueness and regularity of stationary solutions to inhomogeneous Navier-Stokes equations in n

Reinhard Farwig, Hermann Sohr (2009)

Czechoslovak Mathematical Journal

For a bounded domain Ω n , n 3 , we use the notion of very weak solutions to obtain a new and large uniqueness class for solutions of the inhomogeneous Navier-Stokes system - Δ u + u · u + p = f , div u = k , u | Ω = g with u L q , q n , and very general data classes for f , k , g such that u may have no differentiability property. For smooth data we get a large class of unique and regular solutions extending well known classical solution classes, and generalizing regularity results. Moreover, our results are closely related to those of a series of...

Extension of Díaz-Saá's inequality in RN and application to a system of p-Laplacian.

Karim Chaïb (2002)

Publicacions Matemàtiques

The purpose of this paper is to extend the Díaz-Saá’s inequality for the unbounded domains as RN.The proof is based on the Picone’s identity which is very useful in problems involving p-Laplacian. In a second part, we study some properties of the first eigenvalue for a system of p-Laplacian. We use Díaz-Saá’s inequality to prove uniqueness and Egorov’s theorem for the isolation. These results generalize J. Fleckinger, R. F. Manásevich, N. M. Stavrakakis and F. de Thélin’s work [9] for the first...

Extremal solutions for nonlinear neumann problems

Antonella Fiacca, Raffaella Servadei (2001)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.

Finite volume schemes for fully non-linear elliptic equations in divergence form

Jérôme Droniou (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We construct finite volume schemes, on unstructured and irregular grids and in any space dimension, for non-linear elliptic equations of the p -laplacian kind: - div ( | u | p - 2 u ) = f (with 1 < p < ). We prove the existence and uniqueness of the approximate solutions, as well as their strong convergence towards the solution of the PDE. The outcome of some numerical tests are also provided.

Finite volume schemes for fully non-linear elliptic equations in divergence form

Jérôme Droniou (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

We construct finite volume schemes, on unstructured and irregular grids and in any space dimension, for non-linear elliptic equations of the p-Laplacian kind: -div(|∇u|p-2∇u) = ƒ (with 1 < p < ∞). We prove the existence and uniqueness of the approximate solutions, as well as their strong convergence towards the solution of the PDE. The outcome of some numerical tests are also provided.

Finite volume schemes for the p-laplacian on cartesian meshes

Boris Andreianov, Franck Boyer, Florence Hubert (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the finite volume approximation of the p-laplacian equation with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm of the gradient on the mesh’s interfaces is needed in order to discretize the p-laplacian operator. We give a detailed description of the possible nine points schemes ensuring that the solution of the resulting finite dimensional nonlinear system exists and is unique. These schemes, called admissible, are locally...

Currently displaying 281 – 300 of 850