Displaying 181 – 200 of 324

Showing per page

The Picone identity for a class of partial differential equations

Ondřej Došlý (2002)

Mathematica Bohemica

The Picone-type identity for the half-linear second order partial differential equation i = 1 n x i Φ u x i + c ( x ) Φ ( u ) = 0 , Φ ( u ) : = | u | p - 2 u , p > 1 , is established and some applications of this identity are suggested.

The point on the simple Molodensky’s problem

Fernando Sansò (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Il problema di Molodensky, in approssimazione sferica è detto «semplice» perchè può essere trasformato da problema di derivata obliqua a problema di Dirichlet per l’operatore di Laplace. Tale problema è accuratamente analizzato in questa Nota, con particolare riguardo alla generalizzazione delle condizioni di regolarità soddisfatte dal contorno S , sufficienti a garantire l’esistenza di una soluzione fisicamente accettabile.

The Poisson integral for a ball in spaces of constant curvature

Eleutherius Symeonidis (2003)

Commentationes Mathematicae Universitatis Carolinae

We present explicit expressions of the Poisson kernels for geodesic balls in the higher dimensional spheres and real hyperbolic spaces. As a consequence, the Dirichlet problem for the projective space is explicitly solved. Comparison of different expressions for the same Poisson kernel lead to interesting identities concerning special functions.

The principal eigenvalue of the ∞-laplacian with the Neumann boundary condition

Stefania Patrizi (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.

The principal eigenvalue of the ∞-Laplacian with the Neumann boundary condition

Stefania Patrizi (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.

The radiation condition at infinity for the high-frequency Helmholtz equation with source term: a wave packet approach

François Castella (2004)

Journées Équations aux dérivées partielles

We consider the high-frequency Helmholtz equation with a given source term, and a small absorption parameter α > 0 . The high-frequency (or: semi-classical) parameter is ε > 0 . We let ε and α go to zero simultaneously. We assume that the zero energy is non-trapping for the underlying classical flow. We also assume that the classical trajectories starting from the origin satisfy a transversality condition, a generic assumption.Under these assumptions, we prove that the solution u ε radiates in the outgoing...

The resolution of the bounded L 2 curvature conjecture in general relativity

Sergiu Klainerman, Igor Rodnianski, Jérémie Szeftel (2014/2015)

Séminaire Laurent Schwartz — EDP et applications

This paper reports on the recent proof of the bounded L 2 curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the L 2 -norm of the curvature and a lower bound of the volume radius of the corresponding initial data set.

The restriction theorem for fully nonlinear subequations

F. Reese Harvey, H. Blaine Lawson (2014)

Annales de l’institut Fourier

Let X be a submanifold of a manifold Z . We address the question: When do viscosity subsolutions of a fully nonlinear PDE on Z , restrict to be viscosity subsolutions of the restricted subequation on X ? This is not always true, and conditions are required. We first prove a basic result which, in theory, can be applied to any subequation. Then two definitive results are obtained. The first applies to any “geometrically defined” subequation, and the second to any subequation which can be transformed...

Currently displaying 181 – 200 of 324