Displaying 161 – 180 of 324

Showing per page

The non-uniqueness of the limit solutions of the scalar Chern-Simons equations with signed measures

Adilson Eduardo Presoto (2021)

Mathematica Bohemica

We investigate the effect of admitting signed measures as a datum at the scalar Chern-Simons equation - Δ u + e u ( e u - 1 ) = μ in Ω with the Dirichlet boundary condition. Approximating μ by a sequence ( μ n ) n of L 1 functions or finite signed measures such that this equation has a solution u n for each n , we are interested in establishing the convergence of the sequence ( u n ) n to a function u # and describing the form of the measure which appears on the right-hand side of the scalar Chern-Simons equation solved by u # .

The optimization of the stationary heat equation with a variable right-hand side

Ctirad Matyska (1986)

Aplikace matematiky

Solving the stationary heat equation we optimize the temperature on part of the boundary of the domain under investigation. First the Poisson equation is solved; both the Neumann condition on part of the boundary and the Newton condition on the rest are prescribed, the distribution of the heat sources being variable. In the second case, the heat equation also contains a convective term, the distribution of heat sources is specified and the Neumann condition is variable on part of the boundary.

The p -Laplace eigenvalue problem as p in a Finsler metric

M. Belloni, Bernhard Kawohl, P. Juutinen (2006)

Journal of the European Mathematical Society

We consider the p -Laplacian operator on a domain equipped with a Finsler metric. We recall relevant properties of its first eigenfunction for finite p and investigate the limit problem as p .

The p -Laplacian in domains with small random holes

M. Balzano, T. Durante (2003)

Bollettino dell'Unione Matematica Italiana

P h {ll -div (|Duh|p-2 Duh)=g, & in D Eh uhH1,p0(D Eh). . where 2 p n and E h are random subsets of a bounded open set D of R n n 2 . By...

The PDE describing constant mean curvature surfaces

Hongyou Wu (2001)

Mathematica Bohemica

We give an expository account of a Weierstrass type representation of the non-zero constant mean curvature surfaces in space and discuss the meaning of the representation from the point of view of partial differential equations.

Currently displaying 161 – 180 of 324