A polyharmonic analogue of a Lelong theorem and polyhedric harmonicity cells.
We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form where is a bounded smooth domain of with , , , , and , , and are positive parameters. Here is a continuous function. This model arises in the studies of population biology of one species with representing the concentration of the species. We discuss the existence of a positive solution when satisfies certain additional conditions. We use the method of sub-supersolutions...
In this paper we establish the existence of a positive solution for an asymptotically linear elliptic problem on . The main difficulties to overcome are the lack of a priori bounds for Palais–Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make use of techniques introduced by Lions in his work on concentration compactness. For the second we show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be used in order...
In this paper we establish the existence of a positive solution for an asymptotically linear elliptic problem on . The main difficulties to overcome are the lack of a priori bounds for Palais–Smale sequences and a lack of compactness as the domain is unbounded. For the first one we make use of techniques introduced by Lions in his work on concentration compactness. For the second we show how the fact that the “Problem at infinity” is autonomous, in contrast to just periodic, can be used in order...
We derive a residual-based a posteriori error estimator for a discontinuous Galerkin approximation of the Steklov eigenvalue problem. Moreover, we prove the reliability and efficiency of the error estimator. Numerical results are provided to verify our theoretical findings.
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Clément or Scott–Zhang interpolation...
We present new a posteriori error estimates for the finite volume approximations of elliptic problems. They are obtained by applying functional a posteriori error estimates to natural extensions of the approximate solution and its flux computed by the finite volume method. The estimates give guaranteed upper bounds for the errors in terms of the primal (energy) norm, dual norm (for fluxes), and also in terms of the combined primal-dual norms. It is shown that the estimates provide sharp upper and...
In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the...
We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also estimates...
We consider a non-conforming stabilized domain decomposition technique for the discretization of the three-dimensional Laplace equation. The aim is to extend the numerical analysis of residual error indicators to this model problem. Two formulations of the problem are considered and the error estimators are studied for both. In the first one, the error estimator provides upper and lower bounds for the energy norm of the mortar finite element solution whereas in the second case, it also estimates...
For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is exploited...
For a nonconforming finite element approximation of an elliptic model problem, we propose a posteriori error estimates in the energy norm which use as an additive term the “post-processing error” between the original nonconforming finite element solution and an easy computable conforming approximation of that solution. Thus, for the error analysis, the existing theory from the conforming case can be used together with some simple additional arguments. As an essential point, the property is...
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic coercive partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection onto a space spanned by solutions of the governing partial differential equation at selected points in parameter space; (ii) a posteriori error estimation – relaxations of the error-residual equation...
We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic coercive partial differential equations with affine parameter dependence. The essential components are (i ) (provably) rapidly convergent global reduced-basis approximations – Galerkin projection onto a space WN spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii ) a posteriori error estimation – relaxations of the error-residual equation...
We consider the following problem of error estimation for the optimal control of nonlinear parabolic partial differential equations: let an arbitrary admissible control function be given. How far is it from the next locally optimal control? Under natural assumptions including a second-order sufficient optimality condition for the (unknown) locally optimal control, we estimate the distance between the two controls. To do this, we need some information on the lowest eigenvalue of the reduced Hessian....