Displaying 281 – 300 of 504

Showing per page

Existence and uniqueness for a two-dimensional Ventcel problem modeling the equilibrium of a prestressed membrane

Antonio Greco, Giuseppe Viglialoro (2023)

Applications of Mathematics

This paper deals with a mixed boundary-value problem of Ventcel type in two variables. The peculiarity of the Ventcel problem lies in the fact that one of the boundary conditions involves second order differentiation along the boundary. Under suitable assumptions on the data, we first give the definition of a weak solution, and then we prove that the problem is uniquely solvable. We also consider a particular case arising in real-world applications and discuss the resulting model.

Existence and uniqueness of solutions for some degenerate nonlinear elliptic equations

Albo Carlos Cavalheiro (2014)

Archivum Mathematicum

In this article we are interested in the existence and uniqueness of solutions for the Dirichlet problem associated with the degenerate nonlinear elliptic equations Δ ( v ( x ) | Δ u | p - 2 Δ u ) - j = 1 n D j [ ω ( x ) 𝒜 j ( x , u , u ) ] = f 0 ( x ) - j = 1 n D j f j ( x ) , i n Ω in the setting of the weighted Sobolev spaces.

Existence and uniqueness results for solutions of nonlinear equations with right hand side in L 1

A. Fiorenza, C. Sbordone (1998)

Studia Mathematica

We prove an existence and uniqueness theorem for the elliptic Dirichlet problem for the equation div a(x,∇u) = f in a planar domain Ω. Here f L 1 ( Ω ) and the solution belongs to the so-called grand Sobolev space W 0 1 , 2 ) ( Ω ) . This is the proper space when the right hand side is assumed to be only L 1 -integrable. In particular, we obtain the exponential integrability of the solution, which in the linear case was previously proved by Brezis-Merle and Chanillo-Li.

Currently displaying 281 – 300 of 504