Existence de maillages optimaux dans les méthodes d'éléments finis
In this paper we study the nonlinear Dirichlet problem involving p(x)-Laplacian (hemivariational inequality) with nonsmooth potential. By using nonsmooth critical point theory for locally Lipschitz functionals due to Chang [6] and the properties of variational Sobolev spaces, we establish conditions which ensure the existence of solution for our problem.
We study a general class of nonlinear elliptic problems associated with the differential inclusion in Ω where . The vector field a(·,·) is a Carathéodory function. Using truncation techniques and the generalized monotonicity method in function spaces we prove existence of renormalized solutions for general -data.