The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 301 –
320 of
693
It is known that the fundamental solution to an elliptic differential equation with analytic coefficients exists, is determined up to the kernel of the differential operator, and has singularities on characteristics of the equation in ℂ2. In this paper we construct a representation of fundamental solution as a sum of functions, each of those has singularity on a single characteristic.
The author proves the existence of solution of Van Roosbroeck's system of partial differential equations from the theory of semiconductors. His results generalize those of Mock, Gajewski and Seidman.
We prove the existence and uniqueness of weak solutions of boundary problem value problems in an unbounded domain Ω ⊂ Rn for strongly nonlinear 2m order elliptic differential equations.
The maximum angle condition of J. L. Synge was originally introduced in interpolation theory and further used in finite element analysis and applications for triangular and later also for tetrahedral finite element meshes. In this paper we present some of its generalizations to higher-dimensional simplicial elements. In particular, we prove optimal interpolation properties of linear simplicial elements in that degenerate in some way.
A new approach for computationally efficient estimation of stability factors for parametric partial differential equations is presented. The general parametric bilinear form of the problem is approximated by two affinely parametrized bilinear forms at different levels of accuracy (after an empirical interpolation procedure). The successive constraint method is applied on the coarse level to obtain a lower bound for the stability factors, and this bound is extended to the fine level by adding a proper...
A new approach for computationally efficient estimation of stability factors for
parametric partial differential equations is presented. The general parametric bilinear
form of the problem is approximated by two affinely parametrized bilinear forms at
different levels of accuracy (after an empirical interpolation procedure). The successive
constraint method is applied on the coarse level to obtain a lower bound for the stability
factors, and this...
A new approach for computationally efficient estimation of stability factors for
parametric partial differential equations is presented. The general parametric bilinear
form of the problem is approximated by two affinely parametrized bilinear forms at
different levels of accuracy (after an empirical interpolation procedure). The successive
constraint method is applied on the coarse level to obtain a lower bound for the stability
factors, and this...
Currently displaying 301 –
320 of
693