Generalized viscosity solutions of elliptic PDEs and boundary conditions.
Nous nous proposons, dans ce travail, d'étudier certaines propriétés géométriques telles que diverses symétries et diverses concavités radiales, directionnelles, etc., pour des équations completement non linéaires (...).
We consider a quasilinear elliptic problem whose left-hand side is a Leray-Lions operator of -Laplacian type. If and the right-hand side is a Radon measure with singularity of order at , then any supersolution in has singularity of order at least at . In the proof we exploit a pointwise estimate of -superharmonic solutions, due to Kilpeläinen and Malý, which involves Wolff’s potential of Radon’s measure.
We consider the eigenvalue problemin the case where the principal operator has rapid growth. By using a variational approach, we show that under certain conditions, almost all are eigenvalues.
We consider the eigenvalue problem in the case where the principal operator has rapid growth. By using a variational approach, we show that under certain conditions, almost all λ > 0 are eigenvalues.
In this paper we describe PDELab, an extensible C++ template library for finite element methods based on the Distributed and Unified Numerics Environment (Dune). PDELab considerably simplifies the implementation of discretization schemes for systems of partial differential equations by setting up global functions and operators from a simple element-local description. A general concept for incorporation of constraints eases the implementation of essential boundary conditions, hanging nodes and varying...
There has been much progress in recent years in understanding the existence problem for wave maps with small critical Sobolev norm (in particular for two-dimensional wave maps with small energy); a key aspect in that theory has been a renormalization procedure (either a geometric Coulomb gauge, or a microlocal gauge) which converts the nonlinear term into one closer to that of a semilinear wave equation. However, both of these renormalization procedures encounter difficulty if the energy of the...
Cet article présente les idées, les outils et les résultats qui ont permis à Chang S.-Y. A., M. Gursky et Yang P. de donner une caractérisation intégrale conforme de la sphère standard en dimension 4. Nous démarrons avec une généralisation à cette dimension de la formule de Polyakov pour les déterminants régularisés, que nous utilisons ensuite pour résoudre des problèmes du type “Yamabe” pour des polynômes quadratiques en la courbure de Ricci. Nous introduisons au passage le concept de paire conforme,...