Displaying 381 – 400 of 693

Showing per page

On the efficient use of the Galerkin-method to solve Fredholm integral equations

Wolfgang Hackbusch, Stefan A. Sauter (1993)

Applications of Mathematics

In the present paper we describe, how to use the Galerkin-method efficiently in solving boundary integral equations. In the first part we show how the elements of the system matrix can be computed in a reasonable time by using suitable coordinate transformations. These techniques can be applied to a wide class of integral equations (including hypersingular kernels) on piecewise smooth surfaces in 3-D, approximated by spline functions of arbitrary degree. In the second part we show, how to use the...

On the eigenvalues of a Robin problem with a large parameter

Alexey Filinovskiy (2014)

Mathematica Bohemica

We consider the Robin eigenvalue problem Δ u + λ u = 0 in Ω , u / ν + α u = 0 on Ω where Ω n , n 2 is a bounded domain and α is a real parameter. We investigate the behavior of the eigenvalues λ k ( α ) of this problem as functions of the parameter α . We analyze the monotonicity and convexity properties of the eigenvalues and give a variational proof of the formula for the derivative λ 1 ' ( α ) . Assuming that the boundary Ω is of class C 2 we obtain estimates to the difference λ k D - λ k ( α ) between the k -th eigenvalue of the Laplace operator with Dirichlet...

On the eigenvalues of an elliptic operator a x , H u

Sergio Campanato (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let Ω be a bounded open convex set of class C 2 . Let a x , H u be a non linear operator satisfying the condition (A) (elliptic) with constants α , γ , δ . We prove that a number λ 0 is an eigenvalue for the operator a x , H u if and only if the number α λ is an eigen-value for the operator Δ u . If λ 0 , the two systems a x , H u = λ u and Δ u = α λ u have the same solutions. In particular, also the eventual eigen-values of the operator a x , H u should all be negative. Finally, we obtain a sufficient condition for the existence of solutions u H 2 H 0 1 Ω of the system...

On the equivalence of Green functions for general Schrödinger operators on a half-space

Abdoul Ifra, Lotfi Riahi (2004)

Annales Polonici Mathematici

We consider the general Schrödinger operator L = d i v ( A ( x ) x ) - μ on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function G Δ provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity K considered by Zhao and Pinchover. As an application we study the cone L ( ) of all positive L-solutions continuously vanishing...

On the existence and the stability of solutions for higher-order semilinear Dirichlet problems

Marek Galewski, M. Płócienniczak (2007)

Czechoslovak Mathematical Journal

We investigate the existence and stability of solutions for higher-order two-point boundary value problems in case the differential operator is not necessarily positive definite, i.e. with superlinear nonlinearities. We write an abstract realization of the Dirichlet problem and provide abstract existence and stability results which are further applied to concrete problems.

Currently displaying 381 – 400 of 693