Displaying 441 – 460 of 737

Showing per page

A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces

Akihito Unai (2018)

Applications of Mathematics

We shall prove a weak comparison principle for quasilinear elliptic operators - div ( a ( x , u ) ) that includes the negative p -Laplace operator, where a : Ω × N N satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces.

A Weighted Eigenvalue Problems Driven by both p ( · ) -Harmonic and p ( · ) -Biharmonic Operators

Mohamed Laghzal, Abdelouahed El Khalil, Abdelfattah Touzani (2021)

Communications in Mathematics

The existence of at least one non-decreasing sequence of positive eigenvalues for the problem driven by both p ( · ) -Harmonic and p ( · ) -biharmonic operators Δ p ( x ) 2 u - Δ p ( x ) u = λ w ( x ) | u | q ( x ) - 2 u in Ω , u W 2 , p ( · ) ( Ω ) W 0 1 , p ( · ) ( Ω ) , is proved by applying a local minimization and the theory of the generalized Lebesgue-Sobolev spaces L p ( · ) ( Ω ) and W m , p ( · ) ( Ω ) .

A weighted symmetrization for nonlinear elliptic and parabolic equations in inhomogeneous media

Guillermo Reyes, Juan Luis Vázquez (2006)

Journal of the European Mathematical Society

In the theory of elliptic equations, the technique of Schwarz symmetrization is one of the tools used to obtain a priori bounds for classical and weak solutions in terms of general information on the data. A basic result says that, in the absence of lower-order terms, the symmetric rearrangement of the solution u of an elliptic equation, that we write u * , can be compared pointwise with the solution of the symmetrized problem. The main question we address here is the modification of the method to...

Abbildungen harmonischer Raüme mit Anwendung auf die Laplace und Wärmeleitungsgleichung

Wolfhard Hansen (1971)

Annales de l'institut Fourier

This paper is devoted to a study of harmonic mappings φ of a harmonic space E ˜ on a harmonic space E which are related to a family of harmonic mappings of E ˜ into E ˜ . In this way balayage in E may be reduced to balayage in E . In particular, a subset A of E is polar if and only if φ - 1 ( A ) is polar. Similar result for thinness. These considerations are applied to the heat equation and the Laplace equation.

About asymptotic approximations in thin waveguides

Nicole Turbe, Louis Ratier (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We study the propagation of electromagnetic waves in a guide the section of which is a thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.

About asymptotic approximations in thin waveguides

Nicole Turbe, Louis Ratier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We study the propagation of electromagnetic waves in a guide the section of which is a thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.

About Delaunay triangulations and discrete maximum principles for the linear conforming FEM applied to the Poisson equation

Reiner Vanselow (2001)

Applications of Mathematics

The starting point of the analysis in this paper is the following situation: “In a bounded domain in 2 , let a finite set of points be given. A triangulation of that domain has to be found, whose vertices are the given points and which is ‘suitable’ for the linear conforming Finite Element Method (FEM).” The result of this paper is that for the discrete Poisson equation and under some weak additional assumptions, only the use of Delaunay triangulations preserves the maximum principle.

About stability and regularization of ill-posed elliptic Cauchy problems: the case of C1,1 domains

Laurent Bourgeois (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to a conditional stability estimate related to the ill-posed Cauchy problems for the Laplace's equation in domains with C1,1 boundary. It is an extension of an earlier result of [Phung, ESAIM: COCV9 (2003) 621–635] for domains of class C∞. Our estimate is established by using a Carleman estimate near the boundary in which the exponential weight depends on the distance function to the boundary. Furthermore, we prove that this stability estimate is nearly optimal and induces...

About stability of equilibrium shapes

Marc Dambrine, Michel Pierre (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We discuss the stability of "critical" or "equilibrium" shapes of a shape-dependent energy functional. We analyze a problem arising when looking at the positivity of the second derivative in order to prove that a critical shape is an optimal shape. Indeed, often when positivity -or coercivity- holds, it does for a weaker norm than the norm for which the functional is twice differentiable and local optimality cannot be a priori deduced. We solve this problem for a particular but significant example....

Currently displaying 441 – 460 of 737