An Adaptive Newton Algorithm Based on Numerical Inversion: Regularization as Postconditioner.
An alternating-direction iterative procedure is described for a class of Helmholz-like problems. An algorithm for the selection of the iteration parameters is derived; the parameters are complex with some having positive real part and some negative, reflecting the noncoercivity and nonsymmetry of the finite element or finite difference matrix. Examples are presented, with an applications to wave propagation.
We are interested in algorithms for constructing surfaces of possibly small measure that separate a given domain into two regions of equal measure. Using the integral formula for the total gradient variation, we show that such separators can be constructed approximatively by means of sign changing eigenfunctions of the -Laplacians, , under homogeneous Neumann boundary conditions. These eigenfunctions turn out to be limits of steepest descent methods applied to suitable norm quotients.
The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.
In this paper, we derive and analyze a Reissner-Mindlin-like model for isotropic heterogeneous linearly elastic plates. The modeling procedure is based on a Hellinger-Reissner principle, which we modify to derive consistent models. Due to the material heterogeneity, the classical polynomial profiles for the plate shear stress are replaced by more sophisticated choices, that are asymptotically correct. In the homogeneous case we recover a Reissner-Mindlin model with as shear correction factor....