Displaying 501 – 520 of 5493

Showing per page

An alternating-direction iteration method for Helmholtz problems

Jim Douglas, Jeffrey L. Hensley, Jean Elizabeth Roberts (1993)

Applications of Mathematics

An alternating-direction iterative procedure is described for a class of Helmholz-like problems. An algorithm for the selection of the iteration parameters is derived; the parameters are complex with some having positive real part and some negative, reflecting the noncoercivity and nonsymmetry of the finite element or finite difference matrix. Examples are presented, with an applications to wave propagation.

An application of eigenfunctions of p -Laplacians to domain separation

Herbert Gajewski (2001)

Mathematica Bohemica

We are interested in algorithms for constructing surfaces Γ of possibly small measure that separate a given domain Ω into two regions of equal measure. Using the integral formula for the total gradient variation, we show that such separators can be constructed approximatively by means of sign changing eigenfunctions of the p -Laplacians, p 1 , under homogeneous Neumann boundary conditions. These eigenfunctions turn out to be limits of steepest descent methods applied to suitable norm quotients.

An asymptotically optimal model for isotropic heterogeneous linearly elastic plates

Ferdinando Auricchio, Carlo Lovadina, Alexandre L. Madureira (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we derive and analyze a Reissner-Mindlin-like model for isotropic heterogeneous linearly elastic plates. The modeling procedure is based on a Hellinger-Reissner principle, which we modify to derive consistent models. Due to the material heterogeneity, the classical polynomial profiles for the plate shear stress are replaced by more sophisticated choices, that are asymptotically correct. In the homogeneous case we recover a Reissner-Mindlin model with 5 / 6 as shear correction factor....

Currently displaying 501 – 520 of 5493