Previous Page 35

Displaying 681 – 693 of 693

Showing per page

Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data

Alberto Fiorenza, Alain Prignet (2003)

ESAIM: Control, Optimisation and Calculus of Variations

We study the sequence u n , which is solution of - div ( a ( x , 𝔻 u n ) ) + Φ ' ' ( | u n | ) u n = f n + g n in Ω an open bounded set of 𝐑 N and u n = 0 on Ω , when f n tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the N -function Φ , and prove a non-existence result.

Orlicz capacities and applications to some existence questions for elliptic pdes having measure data

Alberto Fiorenza, Alain Prignet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We study the sequence un, which is solution of - div ( a ( x , u n ) ) + Φ ' ' ( | u n | ) u n = f n + g n in Ω an open bounded set of RN and un= 0 on ∂Ω, when fn tends to a measure concentrated on a set of null Orlicz-capacity. We consider the relation between this capacity and the N-function Φ, and prove a non-existence result.

Orlicz spaces, α-decreasing functions, and the Δ₂ condition

Gary M. Lieberman (2004)

Colloquium Mathematicae

We prove some quantitatively sharp estimates concerning the Δ₂ and ∇₂ conditions for functions which generalize known ones. The sharp forms arise in the connection between Orlicz space theory and the theory of elliptic partial differential equations.

Currently displaying 681 – 693 of 693

Previous Page 35