Displaying 61 – 80 of 83

Showing per page

Gradient estimates for inverse curvature flows in hyperbolic space

Julian Scheuer (2015)

Geometric Flows

We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of the properly rescaled hypersurfaces. In particular, the full convergence result holds for the inverse Gauss curvature flow of surfaces without any further pinching condition besides convexity of the initial hypersurface....

Gradient flows with metric and differentiable structures, and applications to the Wasserstein space

Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second...

Gradient potential estimates

Giuseppe Mingione (2011)

Journal of the European Mathematical Society

Pointwise gradient bounds via Riesz potentials like those available for the Poisson equation actually hold for general quasilinear equations.

Gradient regularity for minimizers of functionals under p - q subquadratic growth

F. Leonetti, E. Mascolo, F. Siepe (2001)

Bollettino dell'Unione Matematica Italiana

Si prova la maggior sommabilità del gradiente dei minimi locali di funzionali integrali della forma Ω f D u d x , dove f soddisfa l'ipotesi di crescita ξ p - c 1 f ξ c 1 + ξ q , con 1 < p < q 2 . L'integrando f è C 2 e D D f ha crescita p - 2 dal basso e q - 2 dall'alto.

Gradient regularity via rearrangements for p -Laplacian type elliptic boundary value problems

Andrea Cianchi, Vladimir G. Maz'ya (2014)

Journal of the European Mathematical Society

A sharp estimate for the decreasing rearrangement of the length of the gradient of solutions to a class of nonlinear Dirichlet and Neumann elliptic boundary value problems is established under weak regularity assumptions on the domain. As a consequence, the problem of gradient bounds in norms depending on global integrability properties is reduced to one-dimensional Hardy-type inequalities. Applications to gradient estimates in Lebesgue, Lorentz, Zygmund, and Orlicz spaces are presented.

Graphical Processing Unit accelerated Poisson equation solver and its application for calculation of single ion potential in ion-channels

Nikolay A. Simakov, Maria G. Kurnikova (2013)

Molecular Based Mathematical Biology

Poisson and Poisson-Boltzmann equations (PE and PBE) are widely used in molecular modeling to estimate the electrostatic contribution to the free energy of a system. In such applications, PE often needs to be solved multiple times for a large number of system configurations. This can rapidly become a highly demanding computational task. To accelerate such calculations we implemented a graphical processing unit (GPU) PE solver described in this work. The GPU solver performance is compared to that...

Gravimetric quasigeoid in Slovakia by the finite element method

Zuzana Fašková, Karol Mikula, Róbert Čunderlík, Juraj Janák, Michal Šprlák (2007)

Kybernetika

The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by...

Green's theorem from the viewpoint of applications

Alexander Ženíšek (1999)

Applications of Mathematics

Making use of a line integral defined without use of the partition of unity, Green’s theorem is proved in the case of two-dimensional domains with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces W 1 , p ( ) H 1 , p ( ) ( 1 p ...

Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity

Antonio Ambrosetti, Veronica Felli, Andrea Malchiodi (2005)

Journal of the European Mathematical Society

We deal with a class on nonlinear Schrödinger equations (NLS) with potentials V ( x ) | x | α , 0 < α < 2 , and K ( x ) | x | β , β > 0 . Working in weighted Sobolev spaces, the existence of ground states v ε belonging to W 1 , 2 ( N ) is proved under the assumption that σ < p < ( N + 2 ) / ( N 2 ) for some σ = σ N , α , β . Furthermore, it is shown that v ε are spikes concentrating at a minimum point of 𝒜 = V θ K 2 / ( p 1 ) , where θ = ( p + 1 ) / ( p 1 ) 1 / 2 .

Currently displaying 61 – 80 of 83