Hölder continuity of normalized solutions of the Schrödínger equation.
This paper is concerned with the Hölder regularity of viscosity solutions of second-order, fully non-linear elliptic integro-differential equations. Our results rely on two key ingredients: first we assume that, at each point of the domain, either the equation is strictly elliptic in the classical fully non-linear sense, or (and this is the most original part of our work) the equation is strictly elliptic in a non-local non-linear sense we make precise. Next we impose some regularity and growth...
Let be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on with right hand side, . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range of the complex Monge-Ampère operator acting on -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with -density belong to and proving that has the...
Regularity results for elliptic systems of second order quasilinear PDEs with nonlinear growth of order are proved, extending results of [7] and [10]. In particular Hölder regularity of the solutions is obtained if the dimension is less than or equal to .
We consider the Dirichlet problem for the complex Monge-Ampère equation in a bounded strongly hyperconvex Lipschitz domain in ℂⁿ. We first give a sharp estimate on the modulus of continuity of the solution when the boundary data is continuous and the right hand side has a continuous density. Then we consider the case when the boundary value function is and the right hand side has a density in for some p > 1, and prove the Hölder continuity of the solution.
In this paper, we are concerned with the following problem: given a set of smooth vector fields on , we ask whether there exists a homogeneous Carnot group such that is a sub-Laplacian on . We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several...
We consider the homogenization of elliptic systems with -periodic coefficients. Classical two-scale approximation yields an error inside the domain. We discuss here the existence of higher order corrections, in the case of general polygonal domains. The corrector depends in a non-trivial way on the boundary. Our analysis substantially extends previous results obtained for polygonal domains with sides of rational slopes.