Isometric embedding in R3 of complete noncompact nonnegatively curved surfaces.
Let be a Schrödinger operator on with and satisfying . Assume that is a function such that is an Orlicz function, (the class of uniformly Muckenhoupt weights). Let be an -harmonic function on with , where and are positive constants. In this article, the author proves that the mapping is an isomorphism from the Musielak-Orlicz-Hardy space associated with , , to the Musielak-Orlicz-Hardy space under some assumptions on . As applications, the author further obtains the...
Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field and displacement...
Estimates for the combined effect of boundary approximation and numerical integration on the approximation of (simple) eigenvalues and eigenvectors of 4th order eigenvalue problems with variable/constant coefficients in convex domains with curved boundary by an isoparametric mixed finite element method, which, in the particular case of bending problems of aniso-/ortho-/isotropic plates with variable/constant thickness, gives a simultaneous approximation to bending moment tensor field and displacement...
First we recall a Faber-Krahn type inequality and an estimate for in terms of the so-called Cheeger constant. Then we prove that the eigenvalue converges to the Cheeger constant as . The associated eigenfunction converges to the characteristic function of the Cheeger set, i.e. a subset of which minimizes the ratio among all simply connected . As a byproduct we prove that for convex the Cheeger set is also convex.
Convergence of an iteration sequence for some class of nonlocal elliptic problems appearing in mathematical physics is studied.
In der vorliegenden Arbeit untersuchen wir monoton einschliessende Newton-ähnliche Iterationsverfahren zur näherungsweisen Lösung verschiedener Klassen vonnichtlinearen Differentialgleichungen. Die behandelten Methoden sind auch für nichtkonvexe Nichtlinearitäten anwendbar. Ferner konstruieren wir einschliessende Startnäherungen für diese Verfahren, so dass wir die Existenz der Lösungen der gegebenen Differentialgleichungen sichern können. Die Konvergenz der Verfahren wird auch für den Fall bewiesen,...
We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...
We consider high order finite difference approximations to the Helmholtz equation in an exterior domain. We include a simplified absorbing boundary condition to approximate the Sommerfeld radiation condition. This yields a large, but sparse, complex system, which is not self-adjoint and not positive definite. We discretize the equation with a compact fourth or sixth order accurate scheme. We solve this large system of linear equations with a Krylov subspace iterative method. Since the method converges...