Invariance of essential spectra for generalized Schrödinger operators.
Ce travail a pour objet l’étude d’une méthode de « discrétisation » du Laplacien dans le problème de Poisson à deux dimensions sur un rectangle, avec des conditions aux limites de Dirichlet. Nous approchons l’opérateur Laplacien par une matrice de Toeplitz à blocs, eux-mêmes de Toeplitz, et nous établissons une formule donnant les blocs de l’inverse de cette matrice. Nous donnons ensuite un développement asymptotique de la trace de la matrice inverse, et du déterminant de la matrice de Toeplitz....
MSC 2010: 35J05, 33C10, 45D05
We consider the inverse scattering of time-harmonic plane waves to reconstruct the shape of a sound-soft crack from a knowledge of the given incident field and the phaseless data, and we check the invariance of far field data with respect to translation of the crack. We present a numerical method that is based on a system of nonlinear and ill-posed integral equations, and our scheme is easy and simple to implement. The numerical implementation is described and numerical examples are presented to...
In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.
In this paper, we propose a new numerical method for solving elliptic equations in unbounded regions of . The method is based on the mapping of a part of the domain into a bounded region. An appropriate family of weighted spaces is used for describing the growth or the decay of functions at large distances. After exposing the main ideas of the method, we analyse carefully its convergence. Some 3D computational results are displayed to demonstrate its efficiency and its high performance.
It is proved that one can choose a control function on an arbitrarilly small open subset of the boundary of an obstacle so that the total radiation from this obstacle for a fixed direction of the incident plane wave and for a fixed wave number will be as small as one wishes. The obstacle is called "invisible" in this case.