Displaying 141 – 160 of 504

Showing per page

Error estimates for finite element approximations of elliptic control problems

Walter Alt, Nils Bräutigam, Arnd Rösch (2007)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

We investigate finite element approximations of one-dimensional elliptic control problems. For semidiscretizations and full discretizations with piecewise constant controls we derive error estimates in the maximum norm.

Error estimates for modified local Shepard’s formulas in Sobolev spaces

Carlos Zuppa (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard’s partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard’s formulas, and...

Error estimates for Modified Local Shepard's Formulas in Sobolev spaces

Carlos Zuppa (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Interest in meshfree methods in solving boundary-value problems has grown rapidly in recent years. A meshless method that has attracted considerable interest in the community of computational mechanics is built around the idea of modified local Shepard's partition of unity. For these kinds of applications it is fundamental to analyze the order of the approximation in the context of Sobolev spaces. In this paper, we study two different techniques for building modified local Shepard's formulas, and...

Error estimates for Stokes problem with Tresca friction conditions

Mekki Ayadi, Leonardo Baffico, Mohamed Khaled Gdoura, Taoufik Sassi (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present and study a mixed variational method in order to approximate, with the finite element method, a Stokes problem with Tresca friction boundary conditions. These non-linear boundary conditions arise in the modeling of mold filling process by polymer melt, which can slip on a solid wall. The mixed formulation is based on a dualization of the non-differentiable term which define the slip conditions. Existence and uniqueness of both continuous and discrete solutions of these...

Currently displaying 141 – 160 of 504