Solution of a class of quasilinear Dirichlet and Neumann problems by the method of reduction. (Short Communication).
The author solves a mixed boundary value problem for linear partial differential equations of the elliptic type in a multiply connected domain. Dirichlet conditions are given on the components of the boundary of the domain up to some additive constants which are not known a priori. These constants are to be determined, together with the solution of the boundary value problem, to fulfil some additional conditions. The results are immediately applicable in hydrodynamics to the solution of problems...
Dedicated to Professor A.M. Mathai on the occasion of his 75-th birthday. Mathematics Subject Classi¯cation 2010: 26A33, 44A10, 33C60, 35J10.The object of this article is to present the computational solution of one-dimensional space-time fractional Schrödinger equation occurring in quantum mechanics. The method followed in deriving the solution is that of joint Laplace and Fourier transforms. The solution is derived in a closed and computational form in terms of the H-function. It provides an elegant...
For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.
For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.
For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.