Finitude d'espaces d'états liés pour certains systèmes quantiques
We present, in a uniform manner, several integral equations of the first kind for the solution of the two-dimensional interior Dirichlet boundary value problem. We apply a general numerical collocation method to the various equations, and thereby we compare the various integral equations, and recommend two of them. We give a survey of the various numerical methods, and present a simple method for the numerical solution of the recommended integral equations.
Fite and Kamenev type oscillation criteria for the second order nonlinear damped elliptic differential equation are obtained. Our results are extensions of those for ordinary differential equations and improve some known oscillation criteria in the literature. Several examples are given to show the significance of the results.
We give an explicit expression of a two-parameter family of Flensted-Jensen’s functions on a concrete realization of the universal covering group of . We prove that these functions are, up to a phase factor, radial eigenfunctions of the Landau Hamiltonian on the hyperbolic disc with a magnetic field strength proportional to , and corresponding to the eigenvalue .
In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum...
In this work we consider the dual-primal Discontinuous Petrov–Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete...
We study the existence and the uniqueness of a solution to the linear Fokker-Planck equation in a bounded domain of when is a “confinement” vector field. This field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.
We propose and analyse a abstract framework for augmented mixed formulations. We give a priori error estimate in the general case: conforming and nonconforming approximations with or without numerical integration. Finally, a posteriori error estimator is given. An example of stabilized formulation for Stokes problem is analysed.