Displaying 141 – 160 of 398

Showing per page

Free boundary regularity in Stefan type problems

Ioannis Athanasopoulos (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Regularity results of free boundaries for Stefan type problems are discussed. The influence that curvature may have on the behavior of the free boundary is studied and various open problems are also mentioned.

Further results on sliding manifold design and observation for a heat equation

Enrique Barbieri, Sergey Drakunov, J. Fernando Figueroa (2000)

Kybernetika

This article presents new extensions regarding a nonlinear control design framework that is suitable for a class of distributed parameter systems with uncertainties (DPS). The control objective is first formulated as a function of the distributed system state. Then, a control is sought such that the set in the state space where this relation is true forms an integral manifold reachable in finite time. The manifold is called a Sliding Manifold. The Sliding Mode controller implements a theoretically...

Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE)

Peter Bastian, Felix Heimann, Sven Marnach (2010)

Kybernetika

In this paper we describe PDELab, an extensible C++ template library for finite element methods based on the Distributed and Unified Numerics Environment (Dune). PDELab considerably simplifies the implementation of discretization schemes for systems of partial differential equations by setting up global functions and operators from a simple element-local description. A general concept for incorporation of constraints eases the implementation of essential boundary conditions, hanging nodes and varying...

Global and non-global existence of solutions to a nonlocal and degenerate quasilinear parabolic system

Yujuan Chen (2010)

Czechoslovak Mathematical Journal

The paper deals with positive solutions of a nonlocal and degenerate quasilinear parabolic system not in divergence form u t = v p Δ u + a Ω u d x , v t = u q Δ v + b Ω v d x with null Dirichlet boundary conditions. By using the standard approximation method, we first give a series of fine a priori estimates for the solution of the corresponding approximate problem. Then using the diagonal method, we get the local existence and the bounds of the solution ( u , v ) to this problem. Moreover, a necessary and sufficient condition for the non-global existence...

Hardy spaces of conjugate temperatures

Martha Guzmán-Partida (1997)

Studia Mathematica

We define Hardy spaces of pairs of conjugate temperatures on + 2 using the equations introduced by Kochneff and Sagher. As in the holomorphic case, the Hilbert transform relates both components. We demonstrate that the boundary distributions of our Hardy spaces of conjugate temperatures coincide with the boundary distributions of Hardy spaces of holomorphic functions.

Harnack inequality and heat kernel estimates for the Schrödinger operator with Hardy potential

Luisa Moschini, Alberto Tesei (2005)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this preliminary Note we outline some results of the forthcoming paper [11], concerning positive solutions of the equation t u = u + c x 2 u ( 0 < c < n - 2 2 4 ; n 3 ) . A parabolic Harnack inequality is proved, which in particular implies a sharp two-sided estimate for the associated heat kernel. Our approach relies on the unitary equivalence of the Schrödinger operator H u = - u - c x 2 u with the opposite of the weighted Laplacian λ v = 1 x λ div x λ v when λ = 2 - n + 2 c 0 - c .

Homogenization of a boundary condition for the heat equation

Ján Filo, Stephan Luckhaus (2000)

Journal of the European Mathematical Society

An asymptotic analysis is given for the heat equation with mixed boundary conditions rapidly oscillating between Dirichlet and Neumann type. We try to present a general framework where deterministic homogenization methods can be applied to calculate the second term in the asymptotic expansion with respect to the small parameter characterizing the oscillations.

Currently displaying 141 – 160 of 398