Loading [MathJax]/extensions/MathZoom.js
The Cauchy problem for a semilinear abstract parabolic equation is considered in a fractional power scale associated with a sectorial operator appearing in the linear main part of the equation. Existence of local solutions is proved for non-Lipschitz nonlinearities satisfying a certain critical growth condition.
In this article we introduce an adaptive multi-level
method in space and time for convection diffusion problems. The scheme
is based on a multi-level spatial splitting and the use of different
time-steps. The temporal discretization relies on the characteristics method.
We derive an a posteriori error estimate and design a corresponding
adaptive algorithm.
The efficiency of the multi-level method is illustrated by numerical experiments,
in particular for a convection-dominated problem.
We describe a numerical method for the equation in with Dirichlet boundary and initial conditions which is a combination of the method of characteristics and the finite-difference method. We prove both an a priori local error-estimate of a high order and stability. Example 3.3 indicates that our approximate solutions are disturbed only by a minimal amount of the artificial diffusion.
Based on a recent novel formulation of parametric anisotropic curve shortening flow, we analyse a fully discrete numerical method of this geometric evolution equation. The method uses piecewise linear finite elements in space and a backward Euler approximation in time. We establish existence and uniqueness of a discrete solution, as well as an unconditional stability property. Some numerical computations confirm the theoretical results and demonstrate the practicality of our method.
We illustrate how some interesting new variational principles can be
used for the numerical approximation of solutions to certain (possibly
degenerate) parabolic partial differential equations. One remarkable
feature of the algorithms presented here is that derivatives do not
enter into the variational principles, so, for example, discontinuous
approximations may be used for approximating the heat equation. We
present formulae for computing a Wasserstein metric which enters
into the variational...
This paper deals with the evolution Fokker-Planck-Smoluchowski configurational
probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We
prove the exponential convergence in time of the solution of this equation to a
corresponding steady-state solution, for arbitrary velocity gradients.
Currently displaying 21 –
35 of
35