Painlevé analysis of a class of nonlinear diffusion equations.
Page 1 Next
Chandrasekaran, P., Ramasami, E.K. (1996)
Journal of Applied Mathematics and Stochastic Analysis
Bieske, Thomas (2008)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Ľubica Šedová (1987)
Commentationes Mathematicae Universitatis Carolinae
Di Benedetto, Emmanuele (1998)
Proceedings of Equadiff 9
Azelmat, K., Alaoui, M.Kbiri, Meskine, D., Souissi, A. (2006)
International Journal of Mathematics and Mathematical Sciences
Aboulaich, R., Achchab, B., Meskine, D., Souissi, A. (2006)
Boundary Value Problems [electronic only]
Wilfried Wieser (1987)
Manuscripta mathematica
V. Caselles, B. Coll, J.-M. Morel (1995/1996)
Séminaire Équations aux dérivées partielles (Polytechnique)
Mario Marino, Antonino Maugeri (1984)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Sfruttando i risultati di [1], si prova che le derivate spaziali di ordine con delle soluzioni in di un sistema parabolico quasilineare di ordine con andamenti strettamente controllati, sono parzialmente hölderiane in con esponente di hölderianità decrescente al crescere di .
Sergio Campanato (1981)
Rendiconti del Seminario Matematico della Università di Padova
Mario Marino, Antonino Maugeri (1986)
Rendiconti del Seminario Matematico della Università di Padova
Tomás Godoy, Uriel Kaufmann (2007)
Publicacions Matemàtiques
Let Ω ⊂ RN be a smooth bounded domain. We give sufficient conditions (which are also necessary in many cases) on two nonnegative functions a, b that are possibly discontinuous and unbounded for the existence of nonnegative solutions for semilinear Dirichlet periodic parabolic problems of the form Lu = λa (x, t) up - b (x, t) uq in Ω × R, where 0 < p, q < 1 and λ > 0. In some cases we also show the existence of solutions uλ in the interior of the positive cone and that uλ can...
Tiziana Cardinali, Nikolaos S. Papageorgiou (2000)
Czechoslovak Mathematical Journal
In this paper we study nonlinear parabolic equations using the method of upper and lower solutions. Using truncation and penalization techniques and results from the theory of operators of monotone type, we prove the existence of a periodic solution between an upper and a lower solution. Then with some monotonicity conditions we prove the existence of extremal solutions in the order interval defined by an upper and a lower solution. Finally we consider problems with discontinuities and we show that...
Liu, Wenjun (2007)
International Journal of Mathematics and Mathematical Sciences
Crema, Janete, Boldrini, José Luiz (2000)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Leopold Herrmann (1985)
Czechoslovak Mathematical Journal
Pavel Krejci (1987)
Mathematische Zeitschrift
Voisei, Mircea D. (2005)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Bates, Peter, Chen, Fengxin (1999)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Angela Handlovičová (2007)
Kybernetika
The Perona–Malik nonlinear parabolic problem, which is widely used in image processing, is investigated in this paper from the numerical point of view. An explicit finite volume numerical scheme for this problem is presented and consistency property is proved.
Page 1 Next