Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Bifurcations for Turing instability without SO(2) symmetry

Toshiyuki Ogawa, Takashi Okuda (2007)

Kybernetika

In this paper, we consider the Swift–Hohenberg equation with perturbed boundary conditions. We do not a priori know the eigenfunctions for the linearized problem since the SO ( 2 ) symmetry of the problem is broken by perturbation. We show that how the neutral stability curves change and, as a result, how the bifurcation diagrams change by the perturbation of the boundary conditions.

Bistable traveling waves for monotone semiflows with applications

Jian Fang, Xiao-Qiang Zhao (2015)

Journal of the European Mathematical Society

This paper is devoted to the study of traveling waves for monotone evolution systems of bistable type. In an abstract setting, we establish the existence of traveling waves for discrete and continuous-time monotone semiflows in homogeneous and periodic habitats. The results are then extended to monotone semiflows with weak compactness. We also apply the theory to four classes of evolution systems.

Blow up, global existence and growth rate estimates in nonlinear parabolic systems

Joanna Rencławowicz (2000)

Colloquium Mathematicae

We prove Fujita-type global existence and nonexistence theorems for a system of m equations (m > 1) with different diffusion coefficients, i.e. u i t - d i Δ u i = k = 1 m u k p k i , i = 1 , . . . , m , x N , t > 0 , with nonnegative, bounded, continuous initial values and p k i 0 , i , k = 1 , . . . , m , d i > 0 , i = 1 , . . . , m . For solutions which blow up at t = T < , we derive the following bounds on the blow up rate: u i ( x , t ) C ( T - t ) - α i with C > 0 and α i defined in terms of p k i .

Blow-up of nonnegative solutions to quasilinear parabolic inequalities

Stanislav I. Pohozaev, Alberto Tesei (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We investigate critical exponents for blow-up of nonnegative solutions to a class of parabolic inequalities. The proofs make use of a priori estimates of solutions combined with a simple scaling argument.

Blow-up of solutions for the non-Newtonian polytropic filtration equation with a generalized source

Jun Zhou (2016)

Annales Polonici Mathematici

This paper deals with the blow-up properties of the non-Newtonian polytropic filtration equation u t - d i v ( | u m | p - 2 u m ) = f ( u ) with homogeneous Dirichlet boundary conditions. The blow-up conditions, upper and lower bounds of the blow-up time, and the blow-up rate are established by using the energy method and differential inequality techniques.

Blowup rates for nonlinear heat equations with gradient terms and for parabolic inequalities

Philippe Souplet, Slim Tayachi (2001)

Colloquium Mathematicae

Consider the nonlinear heat equation (E): u t - Δ u = | u | p - 1 u + b | u | q . We prove that for a large class of radial, positive, nonglobal solutions of (E), one has the blowup estimates C ( T - t ) - 1 / ( p - 1 ) | | u ( t ) | | C ( T - t ) - 1 / ( p - 1 ) . Also, as an application of our method, we obtain the same upper estimate if u only satisfies the nonlinear parabolic inequality u t - u x x u p . More general inequalities of the form u t - u x x f ( u ) with, for instance, f ( u ) = ( 1 + u ) l o g p ( 1 + u ) are also treated. Our results show that for solutions of the parabolic inequality, one has essentially the same estimates as for solutions of the ordinary...

Currently displaying 1 – 20 of 27

Page 1 Next