Page 1 Next

Displaying 1 – 20 of 50

Showing per page

Navier-Stokes equations on unbounded domains with rough initial data

Peer Christian Kunstmann (2010)

Czechoslovak Mathematical Journal

We consider the Navier-Stokes equations in unbounded domains Ω n of uniform C 1 , 1 -type. We construct mild solutions for initial values in certain extrapolation spaces associated to the Stokes operator on these domains. Here we rely on recent results due to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded H -calculus on such domains, and use a general form of Kato’s method. We also obtain information on the corresponding pressure term.

New a priori estimates for nondiagonal strongly nonlinear parabolic systems

Arina Arkhipova (2008)

Banach Center Publications

We consider nondiagonal elliptic and parabolic systems of equations with quadratic nonlinearities in the gradient. We discuss a new description of regular points of solutions of such systems. For a class of strongly nonlinear parabolic systems, we estimate locally the Hölder norm of a solution. Instead of smallness of the oscillation, we assume local smallness of the Campanato seminorm of the solution under consideration. Theorems about quasireverse Hölder inequalities proved by the author are essentially...

New results on the Burgers and the linear heat equations in unbounded domains.

J.I. Díaz, S. González (2005)

RACSAM

We consider the Burgers equation and prove a property which seems to have been unobserved until now: there is no limitation on the growth of the nonnegative initial datum u0(x) at infinity when the problem is formulated on unbounded intervals, as, e.g. (0 +∞), and the solution is unique without prescribing its behaviour at infinity. We also consider the associate stationary problem. Finally, some applications to the linear heat equation with boundary conditions of Robin type are also given.

Nonanalyticity of solutions to t u = ² x u + u ²

Grzegorz Łysik (2003)

Colloquium Mathematicae

It is proved that the solution to the initial value problem t u = ² x u + u ² , u(0,x) = 1/(1+x²), does not belong to the Gevrey class G s in time for 0 ≤ s < 1. The proof is based on an estimation of a double sum of products of binomial coefficients.

Nonexistence Results of Solutions of Semilinear Differential Inequalities with Temperal Fractional Derivative on the Heinsenberg Group

Haouam, K., Sfaxi, M. (2009)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33, 33C60, 44A15, 35K55Denoting by Dα0|t the time-fractional derivative of order α (α ∈ (0, 1)) in the sense of Caputo, and by ∆H the Laplacian operator on the (2N + 1) - dimensional Heisenberg group H^N, we prove some nonexistence results for solutions to problems of the type Dα0|tu − ∆H(au) >= |u|^p, Dα0|tu − ∆H(au) >= |v|^p, Dδ0|tv − ∆H(bv) >= |u|^q, in H^N × R+ , with a, b ∈ L ∞ (H^N × R+). For α = 1 (and δ = 1 in the case of two inequalities),...

Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces

Stefano Lisini (2009)

ESAIM: Control, Optimisation and Calculus of Variations

We study existence and approximation of non-negative solutions of partial differential equations of the type t u - div ( A ( ( f ( u ) ) + u V ) ) = 0 in ( 0 , + ) × n , ( 0 . 1 ) where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, f : [ 0 , + ) [ 0 , + ) is a suitable non decreasing function, V : n is a convex function. Introducing the energy functional φ ( u ) = n F ( u ( x ) ) d x + n V ( x ) u ( x ) d x , where F is a convex function linked to f by f ( u ) = u F ' ( u ) - F ( u ) , we show that u is the “gradient flow” of φ with respect to the 2-Wasserstein distance between probability measures on the space...

Nonlinear diffusion equations with variable coefficients as gradient flows in Wasserstein spaces

Stefano Lisini (2008)

ESAIM: Control, Optimisation and Calculus of Variations

We study existence and approximation of non-negative solutions of partial differential equations of the type 
 t u - div ( A ( ( f ( u ) ) + u V ) ) = 0 in ( 0 , + ) × n , ( 0 . 1 ) where A is a symmetric matrix-valued function of the spatial variable satisfying a uniform ellipticity condition, f : [ 0 , + ) [ 0 , + ) is a suitable non decreasing function, V : n is a convex function. Introducing the energy functional φ ( u ) = n F ( u ( x ) ) d x + n V ( x ) u ( x ) d x , where F is a convex function linked to f by f ( u ) = u F ' ( u ) - F ( u ) , we show that u is the “gradient flow” of ϕ with respect to the 2-Wasserstein distance between probability measures on the space...

Nonlinear parabolic equations with natural growth in general domains

A. Dall'aglio, D. Giachetti, J.-P. Puel (2005)

Bollettino dell'Unione Matematica Italiana

We prove an existence result for a class of parabolic problems whose principal part is the p -Laplace operator or a more general Leray-Lions type operator, and featuring an additional first order term which grows like | u | p . Here the spatial domain can have infinite measure, and the data may be not regular enough to ensure the boundedness of solutions. As a consequence, solutions are obtained in a class of functions with exponential integrability. An existence result of bounded solutions is also given...

Currently displaying 1 – 20 of 50

Page 1 Next