Hardy inequalities and dynamic instability of singular Yamabe metrics
Let be a closed polarized complex manifold of Kähler type. Let be the maximal compact subgroup of the automorphism group of . On the space of Kähler metrics that are invariant under and represent the cohomology class , we define a flow equation whose critical points are the extremal metrics,i.e.those that minimize the square of the -norm of the scalar curvature. We prove that the dynamical system in this space of metrics defined by the said flow does not have periodic orbits, and that its...
This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed...
Hölder continuity of weak solutions is studied for a nondiagonal parabolic system of singular quasilinear differential equations with matrix of coefficients satisfying special structure conditions. A technique based on estimating linear combinations of the unknowns is employed.
In this work we consider a diffusion problem in a periodic composite having three phases: matrix, fibers and interphase. The heat conductivities of the medium vary periodically with a period of size ( and ) in the transverse directions of the fibers. In addition, we assume that the conductivity of the interphase material and the anisotropy contrast of the material in the fibers are of the same order (the so-called double-porosity type scaling) while the matrix material has a conductivity of...
We consider a quasilinear parabolic problem with time dependent coefficients oscillating rapidly in the space variable. The existence and uniqueness results are proved by using Rothe’s method combined with the technique of two-scale convergence. Moreover, we derive a concrete homogenization algorithm for giving a unique and computable approximation of the solution.
The gradient flow of bending energy for plane curve is studied. The flow is considered under two kinds of constraints; one is under the area and total-length constraints; the other is under the area and local-length constraints. The fundamental results (the local existence and uniqueness) were obtained independently by Kurihara and the second author for the former one; by Okabe for the later one. For the former one the global existence was shown for any smooth initial curves, but the asymptotic...
We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition for both, the...
Fix a polynomial Φ of the form Φ(α) = α + ∑2≤j≤m aj αk=1j with Φ'(1) gt; 0. We prove that the evolution, on the diffusive scale, of the empirical density of exclusion processes on , with conductances given by special class of functionsW, is described by the unique weak solution of the non-linear parabolic partial differential equation ∂tρ = ∑d ∂xk ∂Wk Φ(ρ). We also derive some properties of the operator ∑k=1d ...
We consider the exclusion process in the one-dimensional discrete torus with points, where all the bonds have conductance one, except a finite number of slow bonds, with conductance , with . We prove that the time evolution of the empirical density of particles, in the diffusive scaling, has a distinct behavior according to the range of the parameter . If , the hydrodynamic limit is given by the usual heat equation. If , it is given by a parabolic equation involving an operator , where ...
Phase-field systems as mathematical models for phase transitions have drawn a considerable attention in recent years. However, while they are suitable for capturing many of the experimentally observed phenomena, they are only of restricted value in modelling hysteresis effects occurring during phase transition processes. To overcome this shortcoming of existing phase-field theories, the authors have recently proposed a new approach to phase-field models which is based on the mathematical theory...