Page 1

Displaying 1 – 18 of 18

Showing per page

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel, G. Orlandi (2002)

ESAIM: Control, Optimisation and Calculus of Variations

We consider complex-valued solutions u ε of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N 2 , where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M 0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of u ε , as ε 0 , is to establish uniform L p bounds for the gradient, for some p > 1 . We review some recent techniques developed in...

Uniform estimates for the parabolic Ginzburg–Landau equation

F. Bethuel, G. Orlandi (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider complex-valued solutions uE of the Ginzburg–Landau equation on a smooth bounded simply connected domain Ω of N , N ≥ 2, where ε > 0 is a small parameter. We assume that the Ginzburg–Landau energy E ε ( u ε ) verifies the bound (natural in the context) E ε ( u ε ) M 0 | log ε | , where M0 is some given constant. We also make several assumptions on the boundary data. An important step in the asymptotic analysis of uE, as ε → 0, is to establish uniform Lp bounds for the gradient, for some p>1. We review some...

Uniqueness of the boundary behavior for large solutions to a degenerate elliptic equation involving the ∞-Laplacian.

Gregorio Díaz, Jesús Ildefonso Díaz (2003)

RACSAM

En esta nota estimamos la tasa máxima de crecimiento en la frontera de las soluciones de viscosidad de -Δ∞u + λ|u|m-1u = f en Ω (λ > 0, m > 3).De hecho, mostramos que sólo hay una única tasa de explosión en la frontera para esas soluciones explosivas. También obtenemos una versión del Teorema de Liouville para el caso Ω = RN.

Universal solutions of a nonlinear heat equation on N

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

In this paper, we study the relationship between the long time behavior of a solution u ( t , x ) of the nonlinear heat equation u t - Δ u + | u | α u = 0 on N (where α > 0 ) and the asymptotic behavior as | x | of its initial value u 0 . In particular, we show that if the sequence of dilations λ n 2 / α u 0 ( λ n · ) converges weakly to z ( · ) as λ n , then the rescaled solution t 1 / α u ( t , · t ) converges uniformly on N to 𝒰 ( 1 ) z along the subsequence t n = λ n 2 , where 𝒰 ( t ) is an appropriate flow. Moreover, we show there exists an initial value U 0 such that the set of all possible z attainable in this...

Currently displaying 1 – 18 of 18

Page 1