The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we review recent developments on the derivation and properties of macroscopic models of collective motion and self-organization. The starting point is a model of self-propelled particles interacting with its neighbors through alignment. We successively derive a mean-field model and its hydrodynamic limit. The resulting macroscopic model is the Self-Organized Hydrodynamics (SOH). We review the available existence results and known properties of the SOH model and discuss it in view...
The study of small magnetic particles has become a very important topic, in particular for the development of technological devices such as those used for magnetic recording. In this field, switching the magnetization inside the magnetic sample is of particular relevance. We here investigate mathematically this problem by considering the full partial differential model of Landau-Lifschitz equations triggered by a uniform (in space) external magnetic field.
The study of small magnetic particles has become a very important topic, in
particular for the development of technological devices such as those
used for magnetic recording. In this field, switching the magnetization inside
the magnetic sample is of particular relevance. We here investigate mathematically
this problem by considering the full partial differential model of Landau-Lifschitz
equations triggered by a uniform (in space) external magnetic field.
The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci.35 (1997) 793–802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media.
ESAIM: M2AN41 (2007) 661–678]. This theory results in a coupled system of nonlinear parabolic differential equations together with an algebraic...
Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...
Models of two phase flows in porous media, used in petroleum
engineering, lead to a system of two coupled equations with elliptic
and parabolic degenerate terms, and two unknowns,
the saturation and the pressure.
For the purpose of their approximation, a coupled scheme, consisting in
a finite volume method together with
a phase-by-phase upstream weighting scheme, is used in the industrial setting.
This paper presents a mathematical analysis of this coupled scheme, first showing
that it satisfies...
Bacillus subtilis swarms rapidly over the surface of a synthetic medium
creating remarkable hyperbranched dendritic communities. Models to reproduce such effects
have been proposed under the form of parabolic Partial Differential Equations representing
the dynamics of the active cells (both motile and multiplying), the passive cells
(non-motile and non-growing) and nutrient concentration. We test the numerical behavior of
such models and compare...
We consider the initial value problem for an infinite system of differential-functional equations of parabolic type. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. The solutions are obtained by the monotone iterative method. We prove theorems on weak partial differential-functional inequalities as well the existence and uniqueness theorems in the class of continuous bounded functions and in the class of functions satisfying...
We consider the motion by curvature of a network of smooth curves with multiple junctions in the plane, that is, the geometric gradient flow associated to the length functional. Such a flow represents the evolution of a two–dimensional multiphase system where the energy is simply the sum of the lengths of the interfaces, in particular it is a possible model for the growth of grain boundaries. Moreover, the motion of these networks of curves is the simplest example of curvature flow for sets which...
We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the -gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...
We build corotational symmetric solutions to the harmonic map flow from the unit disc into the unit sphere which have constant degree. First, we prove the existence of such solutions, using a time semi-discrete scheme based on the idea that the harmonic map flow is the L2-gradient of the relaxed Dirichlet energy. We prove a partial uniqueness result concerning these solutions. Then, we compute numerically these solutions by a moving-mesh method which allows us to deal with the singularity at the...
Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on state functions. Then, we present a numerical scheme based on a “mixed finite element” method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...
Our aim here is to study the thermal diffusion phenomenon in a forced convective flow. A system of nonlinear parabolic equations governs the evolution of the mass fractions in multicomponent mixtures. Some existence and uniqueness results are given under suitable conditions on
state functions. Then, we present a numerical scheme based on a "mixed finite element"method adapted to a finite volume scheme, of which we give numerical analysis. In a last part, we apply an homogenization technique to...
Currently displaying 1 –
20 of
22