The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 241 –
260 of
336
We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.
In this paper we consider nonconvex evolution inclusions driven by time dependent convex subdifferentials. First we establish the existence of a continuous selection for the solution multifunction and then we use that selection to show that the solution set is path connected. Two examples are also presented.
A quasilinear noncoupled thermoelastic system is studied both on a threedimensional bounded domain with a smooth boundary and for a generalized model involving the influence of supports. Sufficient conditions are derived under which the stresses are bounded and continuous on the closure of the domain.
The continuity and boundedness of the stress to the solution of the thermoelastic system is studied first for the linear case on a strip and then for the twodimensional model involving nonlinearities, noncontinuous heating regimes and isolated boundary nonsmoothnesses of the heated body.
In this paper we are interested in term structure models for pricing zero coupon bonds under rapidly oscillating stochastic volatility. We analyze solutions to the generalized Cox–Ingersoll–Ross two factors model describing clustering of interest rate volatilities. The main goal is to derive an asymptotic expansion of the bond price with respect to a singular parameter representing the fast scale for the stochastic volatility process. We derive the second order asymptotic expansion of a solution...
We consider one-dimensional parabolic free boundary value problem with a nonlocal (integro-differential) condition on the free boundary. Results on Cm-smoothness of the free boundary are obtained. In particular, a necessary and sufficient condition for infinite differentiability of the free boundary is given.
We present the solution of some inverse problems for one-dimensional free boundary problems of oxygen consumption type, with a semilinear convection-diffusion-reaction parabolic equation. Using a fixed domain transformation (Landau’s transformation) the direct problem is reduced to a system of ODEs. To minimize the objective functionals in the inverse problems, we approximate the data by a finite number of parameters with respect to which automatic differentiation is applied.
Currently displaying 241 –
260 of
336