Page 1 Next

Displaying 1 – 20 of 187

Showing per page

Teoremi di confronto tra diverse nozioni di movimento secondo la curvatura media

Giovanni Bellettini, Maurizio Paolini (1995)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota presentiamo alcuni teoremi di confronto tra il movimento secondo la curvatura media ottenuto con il metodo delle minime barriere di De Giorgi e i movimenti definiti con i metodi di Evans-Spruck, Chen-Giga-Goto, Giga-Goto-Ishii-Sato.

The analysis of blow-up solutions to a semilinear parabolic system with weighted localized terms

Haihua Lu, Feng Wang, Qiaoyun Jiang (2011)

Annales Polonici Mathematici

This paper deals with blow-up properties of solutions to a semilinear parabolic system with weighted localized terms, subject to the homogeneous Dirichlet boundary conditions. We investigate the influence of the three factors: localized sources u p ( x , t ) , vⁿ(x₀,t), local sources u m ( x , t ) , v q ( x , t ) , and weight functions a(x),b(x), on the asymptotic behavior of solutions. We obtain the uniform blow-up profiles not only for the cases m,q ≤ 1 or m,q > 1, but also for m > 1 q < 1 or m < 1 q > 1.

The area preserving curve shortening flow with Neumann free boundary conditions

Elena Mäder-Baumdicker (2015)

Geometric Flows

We study the area preserving curve shortening flow with Neumann free boundary conditions outside of a convex domain in the Euclidean plane. Under certain conditions on the initial curve the flow does not develop any singularity, and it subconverges smoothly to an arc of a circle sitting outside of the given fixed domain and enclosing the same area as the initial curve.

The Cauchy problem for a strongly degenerate quasilinear equation

F. Andreu, Vicent Caselles, J. M. Mazón (2005)

Journal of the European Mathematical Society

We prove existence and uniqueness of entropy solutions for the Cauchy problem for the quasilinear parabolic equation u t = div 𝐚 ( u , D u ) , where 𝐚 ( z , ξ ) = ξ f ( z , ξ ) , and f is a convex function of ξ with linear growth as ξ , satisfying other additional assumptions. In particular, this class includes a relativistic heat equation and a flux limited diffusion equation used in the theory of radiation hydrodynamics.

Currently displaying 1 – 20 of 187

Page 1 Next