Displaying 261 – 280 of 336

Showing per page

On the solution of the heat equation with nonlinear unbounded memory

Alexander Doktor (1985)

Aplikace matematiky

The paper deals with the question of global solution u , τ to boundary value problem for the system of semilinear heat equation for u and complementary nonlinear differential equation for τ (“thermal memory”). Uniqueness of the solution is shown and the method of successive approximations is used for the proof of existence of a global solution provided the condition ( 𝒫 ) holds. The condition ( 𝒫 ) is verified for some particular cases (e. g.: bounded nonlinearity, homogeneous Neumann problem (even for unbounded...

On the stability of solutions of nonlinear parabolic differential-functional equations

Stanisław Brzychczy (1996)

Annales Polonici Mathematici

We consider a nonlinear differential-functional parabolic boundary initial value problem (1) ⎧A z + f(x,z(t,x),z(t,·)) - ∂z/∂t = 0 for t > 0, x ∈ G, ⎨z(t,x) = h(x)     for t > 0, x ∈ ∂G, ⎩z(0,x) = φ₀(x)     for x ∈ G, and the associated elliptic boundary value problem with Dirichlet condition (2) ⎧Az + f(x,z(x),z(·)) = 0  for x ∈ G, ⎨z(x) = h(x)    for x ∈ ∂G ⎩ where x = ( x , . . . , x m ) G m , G is an open and bounded domain with C 2 + α (0 < α ≤ 1) boundary, the operator     Az := ∑j,k=1m ajk(x) (∂²z/(∂xj ∂xk)) is...

On the Stefan problem with a small parameter

Galina I. Bizhanova (2008)

Banach Center Publications

We consider the multidimensional two-phase Stefan problem with a small parameter κ in the Stefan condition, due to which the problem becomes singularly perturbed. We prove unique solvability and a coercive uniform (with respect to κ) estimate of the solution of the Stefan problem for t ≤ T₀, T₀ independent of κ, and the existence and estimate of the solution of the Florin problem (Stefan problem with κ = 0) in Hölder spaces.

On the Stefan problem with energy specification

Pierluigi Colli (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Vengono trattati due problemi di Stefan con la specificazione dell'energia. Dapprima si fornisce una formulazione debole di un problema unidimensionale ad una fase studiato in [4]: si dimostra un risultato di esistenza. In seguito si considera un problema di Stefan pluridimensionale e multifase in cui viene assegnata l'energia totale del sistema ad ogni istante; si mostra l’esistenza e l’unicità della soluzione per due formulazioni provando inoltre l’equivalenza fra queste.

Currently displaying 261 – 280 of 336