interfaces of solutions for one-dimensional parabolic -Laplacian equations.
In the case of initial data belonging to a wide class of functions including distributions of Gelfand-Shilov type we establish the correct solvability of the Cauchy problem for a new class of Shilov parabolic systems of equations with partial derivatives with bounded smooth variable lower coefficients and nonnegative genus. We also investigate the conditions of local improvement of the convergence of a solution of this problem to its limiting value when the time variable tends to zero.
The existence, uniqueness and regularity of the generalized local solution and the classical local solution to the periodic boundary value problem and Cauchy problem for the multidimensional coupled system of a nonlinear complex Schrödinger equation and a generalized IMBq equation
We study local and global Cauchy problems for the Semilinear Parabolic Equations ∂tU - ΔU = P(D) F(U) with initial data in fractional Sobolev spaces Hps(Rn). In most of the studies on this subject, the initial data U0(x) belongs to Lebesgue spaces Lp(Rn) or to supercritical fractional Sobolev spaces Hps(Rn) (s > n/p). Our purpose is to study the intermediate cases (namely for 0 < s < n/p). We give some mapping properties for functions with polynomial growth on subcritical Hps(Rn)...
Global solvability and asymptotics of semilinear parabolic Cauchy problems in are considered. Following the approach of A. Mielke [15] these problems are investigated in weighted Sobolev spaces. The paper provides also a theory of second order elliptic operators in such spaces considered over , . In particular, the generation of analytic semigroups and the embeddings for the domains of fractional powers of elliptic operators are discussed.
Let be a cylinder in and . It is studied the Cauchy-Dirichlet problem for the uniformly parabolic operator in the Morrey spaces , , , supposing the coefficients to belong to the class of functions with vanishing mean oscillation. There are obtained a priori estimates in Morrey spaces and Hölder regularity for the solution and its spatial derivatives.
We prove local in time solvability of the nonlinear initial-boundary problem to nonlinear nondiagonal parabolic systems of equations (multidimensional case). No growth restrictions are assumed on generating the system functions. In the case of two spatial variables we construct the global in time solution to the Cauchy-Neumann problem for a class of nondiagonal parabolic systems. The solution is smooth almost everywhere and has an at most finite number of singular points.
In this paper we present two versions of the central local discontinuous Galerkin (LDG) method on overlapping cells for solving diffusion equations, and provide their stability analysis and error estimates for the linear heat equation. A comparison between the traditional LDG method on a single mesh and the two versions of the central LDG method on overlapping cells is also made. Numerical experiments are provided to validate the quantitative conclusions from the analysis and to support conclusions...
In this paper we present two versions of the central local discontinuous Galerkin (LDG) method on overlapping cells for solving diffusion equations, and provide their stability analysis and error estimates for the linear heat equation. A comparison between the traditional LDG method on a single mesh and the two versions of the central LDG method on overlapping cells is also made. Numerical experiments are provided to validate the quantitative conclusions from the analysis and to support conclusions...