Page 1 Next

Displaying 1 – 20 of 28

Showing per page

Wave of Chaos and Pattern Formation in Spatial Predator-Prey Systems with Holling Type IV Predator Response

R. K. Upadhyay, N. Kumari, V. Rai (2008)

Mathematical Modelling of Natural Phenomena

The challenges to live in the open water and the diversity of habitats in the marine environments prompts phytoplankton to devise strategies which often involve production of toxins by Harmful Algal Bloom (HAB) and rapid production of metabolites from non-toxic precursor. The functional response of the predator is described by Holling type IV. We investigate wave phenomena and non-linear non-equilibrium pattern formation in a phytoplankton-zooplankton system with Holling type IV functional response....

Waves of Autocrine Signaling in Patterned Epithelia

C. B. Muratov, S. Y. Shvartsman (2010)

Mathematical Modelling of Natural Phenomena

A biophysical model describing long-range cell-to-cell communication by a diffusible signal mediated by autocrine loops in developing epithelia in the presence of a morphogenetic pre-pattern is introduced. Under a number of approximations, the model reduces to a particular kind of bistable reaction-diffusion equation with strong heterogeneity. In the case of the heterogeneity in the form of a long strip a detailed analysis of signal propagation is...

Waves of excitations in heterogeneous annular region, asymmetric arrangement

András Volford, Peter Simon, Henrik Farkas (1999)

Banach Center Publications

This paper deals with the propagation of waves around a circular obstacle. The medium is heterogeneous: the velocity is smaller in the inner region and greater in the outer region. The interface separating the two regions is also circular, and the obstacle is located eccentrically inside it. The different front portraits are classified.

Weak entropic solution to a scalar hyperbolic-parabolic law.

Guy Vallet (2003)

RACSAM

In this paper we are interested in the Dirichlet problem of a hyperbolic-parabolic degenerate equation. Thanks to a global entropic formulation in the sense of F. Otto, we propose a result of existence and uniqueness of the entropic measure valued solution and of the entropic weak solution in the space DM2.

Weak- L p solutions for a model of self-gravitating particles with an external potential

Andrzej Raczyński (2007)

Studia Mathematica

The existence of solutions to a nonlinear parabolic equation describing the temporal evolution of a cloud of self-gravitating particles with a given external potential is studied in weak- L p spaces (i.e. Markiewicz spaces). The main goal is to prove the existence of global solutions and to study their large time behaviour.

Weak periodic solutions of the boundary value problem for nonlinear heat equation

Věnceslava Šťastnová, Svatopluk Fučík (1979)

Aplikace matematiky

The paper deals with the existence of periodic solutions of the boundary value problem for nonlinear heat equation, where various types of nonlinearities are considered. The proofs are based on the investigation of Liapunov-Schmidt bifurcation system via Leray-Schauder degree theory.

Weak Solutions for a Fourth Order Degenerate Parabolic Equation

Changchun Liu, Jinyong Guo (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We consider an initial-boundary value problem for a fourth order degenerate parabolic equation. Under some assumptions on the initial value, we establish the existence of weak solutions by the discrete-time method. The asymptotic behavior and the finite speed of propagation of perturbations of solutions are also discussed.

Weak solutions to a time-dependent heat equation with nonlocal radiation boundary condition and arbitrary p -summable right-hand side

Pierre-Etienne Druet (2010)

Applications of Mathematics

We consider a model for transient conductive-radiative heat transfer in grey materials. Since the domain contains an enclosed cavity, nonlocal radiation boundary conditions for the conductive heat-flux are taken into account. We generalize known existence and uniqueness results to the practically relevant case of lower integrable heat-sources, and of nonsmooth interfaces. We obtain energy estimates that involve only the L p norm of the heat sources for exponents p close to one. Such estimates are...

Weak-strong uniqueness for a class of degenerate parabolic cross-diffusion systems

Philippe Laurençot, Bogdan-Vasile Matioc (2023)

Archivum Mathematicum

Bounded weak solutions to a particular class of degenerate parabolic cross-diffusion systems are shown to coincide with the unique strong solution determined by the same initial condition on the maximal existence interval of the latter. The proof relies on an estimate established for a relative entropy associated to the system.

Weighted energy-dissipation functionals for gradient flows

Alexander Mielke, Ulisse Stefanelli (2011)

ESAIM: Control, Optimisation and Calculus of Variations

We investigate a global-in-time variational approach to abstract evolution by means of the weighted energy-dissipation functionals proposed by Mielke and Ortiz [ESAIM: COCV14 (2008) 494–516]. In particular, we focus on gradient flows in Hilbert spaces. The main result is the convergence of minimizers and approximate minimizers of these functionals to the unique solution of the gradient flow. Sharp convergence rates are provided and the convergence analysis is combined with time-discretization....

Currently displaying 1 – 20 of 28

Page 1 Next