Page 1 Next

Displaying 1 – 20 of 73

Showing per page

Identification of source term in a nonlinear degenerate parabolic equation with memory

Soufiane Abid, Khalid Atifi, El-Hassan Essoufi, Abderrahim Zafrar (2024)

Applications of Mathematics

In this work, we consider an inverse backward problem for a nonlinear parabolic equation of the Burgers' type with a memory term from final data. To this aim, we first establish the well-posedness of the direct problem. On the basis of the optimal control framework, the existence and necessary condition of the minimizer for the cost functional are established. The global uniqueness and stability of the minimizer are deduced from the necessary condition. Numerical experiments demonstrate the effectiveness...

Identification problems for degenerate parabolic equations

Fadi Awawdeh, Hamed M. Obiedat (2013)

Applications of Mathematics

This paper deals with multivalued identification problems for parabolic equations. The problem consists of recovering a source term from the knowledge of an additional observation of the solution by exploiting some accessible measurements. Semigroup approach and perturbation theory for linear operators are used to treat the solvability in the strong sense of the problem. As an important application we derive the corresponding existence, uniqueness, and continuous dependence results for different...

Implementation of the MR tractography visualization kit based on the anisotropic Allen-Cahn equation

Pavel Strachota (2009)

Kybernetika

Magnetic Resonance Diffusion Tensor Imaging (MR–DTI) is a noninvasive in vivo method capable of examining the structure of human brain, providing information about the position and orientation of the neural tracts. After a short introduction to the principles of MR–DTI, this paper describes the steps of the proposed neural tract visualization technique based on the DTI data. The cornerstone of the algorithm is a texture diffusion procedure modeled mathematically by the problem for the Allen–Cahn...

Implicit difference methods for quasilinear parabolic functional differential problems of the Dirichlet type

K. Kropielnicka (2008)

Applicationes Mathematicae

Classical solutions of quasilinear functional differential equations are approximated with solutions of implicit difference schemes. Proofs of convergence of the difference methods are based on a comparison technique. Nonlinear estimates of the Perron type with respect to the functional variable for given functions are used. Numerical examples are given.

Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations

Erik Burman, Alexandre Ern (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...

Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations

Erik Burman, Alexandre Ern (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...

Implicit-explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection-diffusion equations

Erik Burman, Alexandre Ern (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on L2-energy estimates on discrete functions in physical space. Our main...

Inequalities involving heat potentials and Green functions

Neil A. Watson (2015)

Mathematica Bohemica

We take some well-known inequalities for Green functions relative to Laplace’s equation, and prove not only analogues of them relative to the heat equation, but generalizations of those analogues to the heat potentials of nonnegative measures on an arbitrary open set E whose supports are compact polar subsets of E . We then use the special case where the measure associated to the potential has point support, in the following situation. Given a nonnegative supertemperature on an open set E , we prove...

Currently displaying 1 – 20 of 73

Page 1 Next