Page 1 Next

Displaying 1 – 20 of 317

Showing per page

Second order unbounded parabolic equations in separated form

Maciej Kocan, Andrzej Święch (1995)

Studia Mathematica

We prove existence and uniqueness of viscosity solutions of Cauchy problems for fully nonlinear unbounded second order Hamilton-Jacobi-Bellman-Isaacs equations defined on the product of two infinite-dimensional Hilbert spaces H'× H'', where H'' is separable. The equations have a special "separated" form in the sense that the terms involving second derivatives are everywhere defined, continuous and depend only on derivatives with respect to x'' ∈ H'', while the unbounded terms are of first order...

Segmentation of MRI data by means of nonlinear diffusion

Radomír Chabiniok, Radek Máca, Michal Beneš, Jaroslav Tintěra (2013)

Kybernetika

The article focuses on the application of the segmentation algorithm based on the numerical solution of the Allen-Cahn non-linear diffusion partial differential equation. This equation is related to the motion of curves by mean curvature. It exhibits several suitable mathematical properties including stable solution profile. This allows the user to follow accurately the position of the segmentation curve by bringing it quickly to the vicinity of the segmented object and by approaching the details...

Self-similar solutions for the two-dimensional Nernst-Planck-Debye system

Łukasz Paszkowski (2012)

Applicationes Mathematicae

We investigate the two-component Nernst-Planck-Debye system by a numerical study of self-similar solutions using the Runge-Kutta method of order four and comparing the results obtained with the solutions of a one-component system. Properties of the solutions indicated by numerical simulations are proved and an existence result is established based on comparison arguments for singular ordinary differential equations.

Self-similar solutions in reaction-diffusion systems

Joanna Rencławowicz (2003)

Banach Center Publications

In this paper we examine self-similar solutions to the system u i t - d i Δ u i = k = 1 m u k p k i , i = 1,…,m, x N , t > 0, u i ( 0 , x ) = u 0 i ( x ) , i = 1,…,m, x N , where m > 1 and p k i > 0 , to describe asymptotics near the blow up point.

Self-similarity in chemotaxis systems

Yūki Naito, Takashi Suzuki (2008)

Colloquium Mathematicae

We consider a system which describes the scaling limit of several chemotaxis systems. We focus on self-similarity, and review some recent results on forward and backward self-similar solutions to the system.

Currently displaying 1 – 20 of 317

Page 1 Next