On higher-order semilinear parabolic equations with measures as initial data
We consider th-order semilinear parabolic equations in , with Dirac’s mass as the initial function. We show that for , the Cauchy problem admits...
We consider th-order semilinear parabolic equations in , with Dirac’s mass as the initial function. We show that for , the Cauchy problem admits...
We study a family of semilinear reaction-diffusion equations on spatial domains , ε > 0, in lying close to a k-dimensional submanifold ℳ of . As ε → 0⁺, the domains collapse onto (a subset of) ℳ. As proved in [15], the above family has a limit equation, which is an abstract semilinear parabolic equation defined on a certain limit phase space denoted by . The definition of , given in the above paper, is very abstract. One of the objectives of this paper is to give more manageable characterizations...
The present paper deals with the numerical solution of the nonlinear heat equation. An iterative method is suggested in which the iterations are obtained by solving linear heat equation. The convergence of the method is proved under very natural conditions on given input data of the original problem. Further, questions of convergence of the Galerkin method applied to the original equation as well as to the linear equations in the above mentioned iterative method are studied.
Sufficient conditions are obtained so that a weak subsolution of , bounded from above on the parabolic boundary of the cylinder , turns out to be bounded from above in .
We consider a nonlinear evolution inclusion driven by an m-accretive operator which generates an equicontinuous nonlinear semigroup of contractions. We establish the existence of extremal integral solutions and we show that they form a dense, -subset of the solution set of the original Cauchy problem. As an application, we obtain “bang-bang”’ type theorems for two nonlinear parabolic distributed parameter control systems.