Existence de la trace initiale pour des solutions d'une équation parabolique dégénérée
We give some results on the existence, uniqueness and regularity of a nonlinear evolution system. This system models the viscoelastic behaviour of unicellular marine alga Acetabularia mediterrania when the calcium concentration varies. We show (with the aid of a fixed-point theorem) that the system admits a unique local solution in time.
We study the existence of a weak solution to a Cauchy-Dirichlet problem for evolutional p-Laplacian systems with constant coefficients and principal term only. The initial-boundary data is assumed to be a bounded weak solution of an evolutional p-Laplacian system with an L¹-function as external force. The key ingredient is the maximum principle for weak solutions.
We prove the unique existence of a classical solution for a linear parabolic system of nondivergence and nondiagonal form. The key ingredient is to combine the energy estimates with Schauder estimates and to obtain a uniform boundedness of a solution.
This paper deals with existence of finite-time blow-up solutions to a degenerate parabolic–elliptic Keller–Segel system with logistic source. Recently, finite-time blow-up was established for a degenerate Jäger–Luckhaus system with logistic source. However, blow-up solutions of the aforementioned system have not been obtained. The purpose of this paper is to construct blow-up solutions of a degenerate Keller–Segel system with logistic source.
The paper deals with the initial boundary value problem of Robin type for parabolic functional differential equations. The unknown function is the functional variable in the equation and the partial derivatives appear in the classical sense. A theorem on the existence of a classical solution is proved. Our formulation and results cover differential equations with deviated variables and differential integral problems.
We consider a nonlinear evolution inclusion defined in the abstract framework of an evolution triple of spaces and we look for extremal periodic solutions. The nonlinear operator is only pseudomonotone coercive. Our approach is based on techniques of multivalued analysis and on the theory of operators of monotone-type. An example of a parabolic distributed parameter system is also presented.