Displaying 341 – 360 of 402

Showing per page

Time splitting for wave equations in random media

Guillaume Bal, Lenya Ryzhik (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Numerical simulation of high frequency waves in highly heterogeneous media is a challenging problem. Resolving the fine structure of the wave field typically requires extremely small time steps and spatial meshes. We show that capturing macroscopic quantities of the wave field, such as the wave energy density, is achievable with much coarser discretizations. We obtain such a result using a time splitting algorithm that solves separately and successively propagation and scattering in the...

Topological sensitivity analysis for time-dependent problems

Boris Vexler, Takéo Takahashi, Samuel Amstutz (2008)

ESAIM: Control, Optimisation and Calculus of Variations

The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...

Topological sensitivity analysis for time-dependent problems

Samuel Amstutz, Takéo Takahashi, Boris Vexler (2007)

ESAIM: Control, Optimisation and Calculus of Variations

The topological sensitivity analysis consists in studying the behavior of a given shape functional when the topology of the domain is perturbed, typically by the nucleation of a small hole. This notion forms the basic ingredient of different topology optimization/reconstruction algorithms. From the theoretical viewpoint, the expression of the topological sensitivity is well-established in many situations where the governing p.d.e. system is of elliptic type. This paper focuses on the derivation...

Uniformly exponentially or polynomially stable approximations for second order evolution equations and some applications

Farah Abdallah, Serge Nicaise, Julie Valein, Ali Wehbe (2013)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the approximation of second order evolution equations. It is well known that the approximated system by finite element or finite difference is not uniformly exponentially or polynomially stable with respect to the discretization parameter, even if the continuous system has this property. Our goal is to damp the spurious high frequency modes by introducing numerical viscosity terms in the approximation scheme. With these viscosity terms, we show the exponential or polynomial...

Wave equation and multiplier estimates on ax + b groups

Detlef Müller, Christoph Thiele (2007)

Studia Mathematica

Let L be the distinguished Laplacian on certain semidirect products of ℝ by ℝⁿ which are of ax + b type. We prove pointwise estimates for the convolution kernels of spectrally localized wave operators of the form e i t L ψ ( L / λ ) for arbitrary time t and arbitrary λ > 0, where ψ is a smooth bump function supported in [-2,2] if λ ≤ 1 and in [1,2] if λ ≥ 1. As a corollary, we reprove a basic multiplier estimate of Hebisch and Steger [Math. Z. 245 (2003)] for this particular class of groups, and derive Sobolev...

Wave equation with a concentrated moving source

Vladimír B. Kameń (1991)

Applications of Mathematics

A tempered distribution which is an exact solution of the wave equation with a concentrated moving source on the right-hand side, is obtained in the paper by means of the Cagniard - de Hoop method.

Wave Equation with Slowly Decaying Potential: asymptotics of Solution and Wave Operators

S. A. Denisov (2010)

Mathematical Modelling of Natural Phenomena

In this paper, we consider one-dimensional wave equation with real-valued square-summable potential. We establish the long-time asymptotics of solutions by, first, studying the stationary problem and, second, using the spectral representation for the evolution equation. In particular, we prove that part of the wave travels ballistically if q ∈ L2(ℝ+) and this result is sharp.

Weak solutions to a nonlinear variational wave equation and some related problems

Ping Zhang (2006)

Applications of Mathematics

In this paper we present some results on the global existence of weak solutions to a nonlinear variational wave equation and some related problems. We first introduce the main tools, the L p Young measure theory and related compactness results, in the first section. Then we use the L p Young measure theory to prove the global existence of dissipative weak solutions to the asymptotic equation of the nonlinear wave equation, and comment on its relation to Camassa-Holm equations in the second section....

Weak solutions to the initial boundary value problem for a semilinear wave equation with damping and source terms

Petronela Radu (2008)

Applicationes Mathematicae

We show local existence of solutions to the initial boundary value problem corresponding to a semilinear wave equation with interior damping and source terms. The difficulty in dealing with these two competitive forces comes from the fact that the source term is not a locally Lipschitz function from H¹(Ω) into L²(Ω) as typically assumed in the literature. The strategy behind the proof is based on the physics of the problem, so it does not use the damping present in the equation. The arguments are...

Weakly regular T 2 -symmetric spacetimes. The global geometry of future Cauchy developments

Philippe LeFloch, Jacques Smulevici (2015)

Journal of the European Mathematical Society

We provide a geometric well-posedness theory for the Einstein equations within the class of weakly regular vacuum spacetimes with T 2 -symmetry, as defined in the present paper, and we investigate their global causal structure. Our assumptions allow us to give a meaning to the Einstein equations under weak regularity as well as to solve the initial value problem under the assumed symmetry. First, introducing a frame adapted to the symmetry and identifying certain cancellation properties taking place...

Well posedness and control of semilinear wave equations with iterated logarithms

Piermarco Cannarsa, Vilmos Komornik, Paola Loreti (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Motivated by a classical work of Erdős we give rather precise necessary and sufficient growth conditions on the nonlinearity in a semilinear wave equation in order to have global existence for all initial data. Then we improve some former exact controllability theorems of Imanuvilov and Zuazua.

Currently displaying 341 – 360 of 402