Temps de vie et comportement explosif des solutions d'équations d'ondes quasi-linéaires en dimension deux. I
The energy in a square membrane Ω subject to constant viscous damping on a subset decays exponentially in time as soon as ω satisfies a geometrical condition known as the “Bardos-Lebeau-Rauch” condition. The rate of this decay satisfies (see Lebeau [Math. Phys. Stud.19 (1996) 73–109]). Here denotes the spectral abscissa of the damped wave equation operator and is a number called the geometrical quantity of ω and defined as follows. A ray in Ω is the trajectory generated by the free motion...
We introduce and study the linear symmetric systems associated with the modified Cherednik operators. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite propagation speed property of it.
We show that the ``radiation field'' introduced by F.G. Friedlander, mapping Cauchy data for the wave equation to the rescaled asymptotic behavior of the wave, is a Fourier integral operator on any non-trapping asymptotically hyperbolic or asymptotically conic manifold. The underlying canonical relation is associated to a ``sojourn time'' or ``Busemann function'' for geodesics. As a consequence we obtain some information about the high frequency behavior of the scattering...
We prove an observability estimate for a wave equation with rapidly oscillating density, in a bounded domain with Dirichlet boundary condition.