Bilinear space-time estimates for homogeneous wave equations
The initial boundary value problem for a viscoelastic equation with nonlinear damping in a bounded domain is considered. By modifying the method, which is put forward by Li, Tasi and Vitillaro, we sententiously proved that, under certain conditions, any solution blows up in finite time. The estimates of the life-span of solutions are also given. We generalize some earlier results concerning this equation.
We focus on the blow-up in finite time of weak solutions to the wave equation with interior and boundary nonlinear sources and dissipations. Our central interest is the relationship of the sources and damping terms to the behavior of solutions. We prove that under specific conditions relating the sources and the dissipations (namely p > m and k > m), weak solutions blow up in finite time.
In this paper, we show finite time blow-up of solutions of the p−wave equation in ℝN, with critical Sobolev exponent. Our work extends a result by Galaktionov and Pohozaev [4]
We consider space semi-discretizations of the 1-d wave equation in a bounded interval with homogeneous Dirichlet boundary conditions. We analyze the problem of boundary observability, i.e., the problem of whether the total energy of solutions can be estimated uniformly in terms of the energy concentrated on the boundary as the net-spacing h → 0. We prove that, due to the spurious modes that the numerical scheme introduces at high frequencies, there is no such a uniform bound. We prove however a...
We study a model describing vibrations of a cylindrical domain with thickness e > 0. A characteristic of this model is that it contains pollution terms in the boundary data and missing terms in the initial data. The method of sentinels'' of J. L. Lions [7] is followed to construct a sentinel using the observed vibrations on the boundary. Such a sentinel, by construction, provides information on pollution terms independent of missing terms. This requires resolution of initial-boundary value...